Skip to content

Commit

Permalink
added full fem velocity example with differing grids
Browse files Browse the repository at this point in the history
  • Loading branch information
pjaap committed Oct 10, 2024
1 parent 3085a9d commit 862aeb9
Showing 1 changed file with 276 additions and 0 deletions.
276 changes: 276 additions & 0 deletions examples/Example240_FiniteElementVelocities.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,276 @@
#=
# 240: 2D Convection in quadratic stagnation flow velocity field
([source code](@__SOURCE_URL__))
Solve the equation
```math
-\nabla ( D \nabla u - v u) = 0
```
in $\Omega=(0,L)\times (0,H)$ with a homogeneous Neumann boundary condition
at $x=0$, an outflow boundary condition at $x=L$, a Dirichlet inflow
condition at $y=H$, and a homogeneous Dirichlet boundary condition
on part of $y=0$.
The analytical expression for the velocity field is $v(x,y)=(x^2,-2xy)$ in
cartesian coordinates and $v(r,z)=(r^2,-3rz)$ in cylindrical coordinates, i.e.
where the system is solved on $\Omega$ to represent a solution on the solid
of revolution arising from rotating $\Omega$ around $x=0$.
We compute the solution $u$ in both coordinate systems where $v$ is given
as an analytical expression and as a finite element interpolation onto
the grid of $\Omega$.
=#

module Example240_FiniteElementVelocities
using Printf
using ExtendableFEMBase
using ExtendableFEM
using VoronoiFVM
using ExtendableGrids
using GridVisualize
using LinearAlgebra

function stagnation_flow_cartesian(x, y)
return (x^2, -2x * y)
end

function stagnation_flow_cylindrical(r, z)
return (r^2, -3r * z)
end

function inflow_cylindrical(u, qpinfo)
x = qpinfo.x
u .= stagnation_flow_cylindrical(x[1], x[2])
end

function inflow_cartesian(u, qpinfo)
x = qpinfo.x
u .= stagnation_flow_cartesian(x[1], x[2])
end

function flux!(f, u, edge, data)
vd = data.evelo[edge.index] / data.D
bp = fbernoulli(vd)
bm = fbernoulli(-vd)
f[1] = data.D * (bp * u[1] - bm * u[2])
end

function bconditions!(f, u, node, data)
# catalytic Dirichlet condition at y=0
if node.region == 5
boundary_dirichlet!(f, u, node, 1, node.region, 0.0)
end

# outflow condition at x = L
if node.region == 2
f[1] = data.bfvelo[node.ibnode, node.ibface] * u[1]
end

# inflow condition at y = H
if node.region == 3
boundary_dirichlet!(f, u, node, 1, node.region, data.cin)
end
end

mutable struct Data
D::Float64
cin::Float64
evelo::Array
bfvelo::Array

Data() = new()
end

function main(; coord_system = Cartesian2D, usefem = false, nref = 0, Plotter = nothing,
D = 0.01, cin = 1.0, assembly = :edgewise)
if coord_system == Cylindrical2D
analytical_velocity = stagnation_flow_cylindrical
else
analytical_velocity = stagnation_flow_cartesian
end

data = Data()
data.D = D
data.cin = cin

H = 1.0
L = 5.0
grid = simplexgrid(range(0, L; length = 20 * 2^nref),
range(0, H; length = 5 * 2^nref))
bfacemask!(grid, [L / 4, 0.0], [3 * L / 4, 0.0], 5)

if usefem
function interpolate_vel!(result, qpinfo)
x = qpinfo.x
result .= analytical_velocity(x[1], x[2])
end
FES = FESpace{H1P2(2)}(grid)
fem_velocity = FEVector(FES)[1]
interpolate!(fem_velocity, interpolate_vel!)

evelo = edgevelocities(grid, fem_velocity)
bfvelo = bfacevelocities(grid, fem_velocity)
else
evelo = edgevelocities(grid, analytical_velocity)
bfvelo = bfacevelocities(grid, analytical_velocity)
end

data.evelo = evelo
data.bfvelo = bfvelo

physics = VoronoiFVM.Physics(; flux = flux!, breaction = bconditions!, data)
sys = VoronoiFVM.System(grid, physics; assembly = assembly)
enable_species!(sys, 1, [1])

sol = solve(sys; inival = 0.0)

vis = GridVisualizer(; Plotter = Plotter)

scalarplot!(vis[1, 1], grid, sol[1, :]; flimits = (0, cin + 1.0e-5),
show = true)
sol, evelo, bfvelo
end

using Test
function runtests()
for coord_system in [Cartesian2D, Cylindrical2D]
sol_analytical, evelo_analytical, bfvelo_analytical = main(;
coord_system, usefem = false)
sol_fem, evelo_fem, bfvelo_fem = main(; coord_system, usefem = true)
@test norm(evelo_analytical .- evelo_fem, Inf) 1.0e-11
@test norm(bfvelo_analytical .- bfvelo_fem, Inf) 1.0e-09
@test norm(sol_analytical .- sol_fem, Inf) 1.0e-10
end
end

function full_fem_demo(; coord_system = Cartesian2D, nref = 1, Plotter = nothing,
μ = 1.0e-02, D = 0.01, cin = 1.0, assembly = :edgewise, interpolation_eps = 1.0e-09)
H = 1.0
L = 5.0

flowgrid = simplexgrid(range(0, L; length = 20 * 2^nref),
range(0, H; length = 5 * 2^nref))

h_fine = 1.0e-01
X_bottom = geomspace(0.0, L / 2, 5.0e-01, h_fine)
X_cat = range(L / 2, L; step = h_fine)
chemgrid = simplexgrid([X_bottom; X_cat[2:end]],
geomspace(0.0, H, 1.0e-03, 1.0e-01))
bfacemask!(chemgrid, [L / 2, 0.0], [3 * L / 4, 0.0], 5)

velocity = compute_velocity(flowgrid, coord_system, μ; interpolation_eps)

DivIntegrator = L2NormIntegrator([div(1)]; quadorder = 2 * 2, resultdim = 1)
div_v = sqrt(sum(evaluate(DivIntegrator, [velocity])))
@info "||div(R(v))||_2 = $(div_v)"

data = Data()
data.D = D
data.cin = cin

evelo = edgevelocities(chemgrid, velocity)
bfvelo = bfacevelocities(chemgrid, velocity)

data.evelo = evelo
data.bfvelo = bfvelo

physics = VoronoiFVM.Physics(; flux = flux!, breaction = bconditions!, data)
sys = VoronoiFVM.System(chemgrid, physics; assembly = assembly)
enable_species!(sys, 1, [1])

sol = solve(sys; inival = 0.0)

vis = GridVisualizer(; Plotter = Plotter)

scalarplot!(vis[1, 1], chemgrid, sol[1, :]; flimits = (0, cin + 1.0e-5),
show = true)

minmax = extrema(sol)
@info "Minimal/maximal values of concentration: $(minmax)"

return sol
end

function compute_velocity(flowgrid, coord_system, μ = 1.0e-02; interpolation_eps = 1.0e-10)
axisymmetric = coord_system == Cylindrical2D ? true : false

# define finite element spaces
FE_v, FE_p = H1BR{2}, L2P0{1}
reconst_FEType = HDIVBDM1{2}
FES = [FESpace{FE_v}(flowgrid), FESpace{FE_p}(flowgrid; broken = true)]

# describe problem
Problem = ProblemDescription("incompressible Stokes problem")
v = Unknown("v"; name = "velocity")
p = Unknown("p"; name = "pressure")
assign_unknown!(Problem, v)
assign_unknown!(Problem, p)

# assign stokes operator
assign_operator!(Problem,
BilinearOperator(
kernel_stokes!, axisymmetric ? [id(v), grad(v), id(p)] : [grad(v), id(p)];
bonus_quadorder = 2, store = false,
params = [μ, axisymmetric], verbosity = 2))

# assign boundary condition operators
if axisymmetric
# inflow
assign_operator!(
Problem, InterpolateBoundaryData(v, inflow_cylindrical; regions = [1, 2, 3, 4]))
else
# inflow and outflow
assign_operator!(
Problem, InterpolateBoundaryData(v, inflow_cartesian; regions = [1, 2, 3, 4]))
end

velocity_solution = solve(Problem, FES)

# ensure divergence free solution by projecting onto reconstruction spaces
FES_reconst = FESpace{reconst_FEType}(flowgrid)
R = FEVector(FES_reconst)
if axisymmetric
lazy_interpolate!(R[1], velocity_solution, [id(v)]; postprocess = multiply_r,
bonus_quadorder = 2, eps = interpolation_eps)
else
lazy_interpolate!(
R[1], velocity_solution, [id(v)];
bonus_quadorder = 2, eps = interpolation_eps)
end

return R[1]
end

function kernel_stokes!(result, u_ops, qpinfo)
μ = qpinfo.params[1]
axisymmetric = qpinfo.params[2]
if axisymmetric > 0
r = qpinfo.x[1]
u, ∇u, p = view(u_ops, 1:2), view(u_ops, 3:6), view(u_ops, 7)
result[1] = μ / r * u[1] - p[1]
result[2] = 0
result[3] = μ * r * ∇u[1] - r * p[1]
result[4] = μ * r * ∇u[2]
result[5] = μ * r * ∇u[3]
result[6] = μ * r * ∇u[4] - r * p[1]
result[7] = -(r * (∇u[1] + ∇u[4]) + u[1])
else
∇u, p = view(u_ops, 1:4), view(u_ops, 5)
result[1] = μ * ∇u[1] - p[1]
result[2] = μ * ∇u[2]
result[3] = μ * ∇u[3]
result[4] = μ * ∇u[4] - p[1]
result[5] = -(∇u[1] + ∇u[4])
end
return nothing
end

function multiply_r(result, input, qpinfo)
x = qpinfo.x
result .= input * x[1]
return nothing
end

end

0 comments on commit 862aeb9

Please sign in to comment.