Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
zhao-tong committed Jun 3, 2021
0 parents commit 61980fd
Show file tree
Hide file tree
Showing 81 changed files with 119,786 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .gitattributes
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
data/T_files/* filter=lfs diff=lfs merge=lfs -text
# data/pubmed* filter=lfs diff=lfs merge=lfs -text
9 changes: 9 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
*__pycache__/
.vscode/
.DS_Store
*.py[cod]
*$py.class

logs/
data/train_split/
data/ogbl_ddi/
37 changes: 37 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
Counterfactual Graph Learning for Link Prediction
====
This repository contains the source code for the paper:

Counterfactual Graph Learning for Link Prediction

by by [Tong Zhao](https://tzhao.io/) ([email protected]), Gang Liu, Daheng Wang, Wenhao Yu, and [Meng Jiang](http://www.meng-jiang.com/).

## Requirements

This code package was developed and tested with Python 3.8.5 and PyTorch 1.6.0. All dependencies specified in the ```requirements.txt``` file. The packages can be installed by
```
pip install -r requirements.txt
```

## Usage
Following are the commands to reproduce the experiment results on different datasets.
```
# Cora
python main.py --dataset cora --metric auc --alpha 1 --beta 1 --gamma 30 --lr 0.1 --embraw mvgrl --t kcore --neg_rate 50 --jk_mode mean --trail 20
# CiteSeer
python main.py --dataset citeseer --metric auc --alpha 1 --beta 1 --gamma 30 --lr=0.1 --embraw mvgrl --t kcore --neg_rate 50 --jk_mode mean --trail 20
# PubMed
python main.py --dataset pubmed --metric auc --alpha 1 --beta 1 --gamma 30 --lr 0.1 --embraw mvgrl --t kcore --neg_rate 40 --jk_mode mean --batch_size 12000 --epochs 200 --patience 50 --trail 20
# Facebook
python main.py --dataset facebook --metric hits@20 --alpha 1e-3 --beta 1e-3 --gamma 30 --lr 0.005 --embraw mvgrl --t louvain --neg_rate 1 --jk_mode mean --trail 20
# OGBL-ddi
python main.py --dataset ogbl-ddi --metric hits@20 --alpha 1e-3 --beta 1e-3 --gamma 10 --lr 0.01 --embraw mvgrl --t louvain --neg_rate 1 --jk_mode mean --epochs=200 --epochs_ft=200 --patience=50 --trail 20
```
The step of finding all the counterfactual links can be slow for the first run, please adjust the ```--n_workers``` parameter according to available processes.



247 changes: 247 additions & 0 deletions cf_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
import os
import copy
import pickle
from multiprocessing import Pool
from itertools import combinations
import torch
import torch.nn.functional as F
import numpy as np
from sklearn.preprocessing import normalize
import scipy.sparse as sp
from scipy.spatial.distance import cdist
from scipy.sparse.csgraph import dijkstra
from scipy.sparse.linalg import inv, eigs
import networkx as nx
from sknetwork.embedding import Spectral
from sknetwork.utils import membership_matrix
from sknetwork.hierarchy import Ward, cut_straight
from sknetwork.clustering import Louvain, KMeans, PropagationClustering
from geomloss import SamplesLoss
import pysbm


def load_t_files(args, T_file, logger, adj_train):
# raw node embeddings for nearest neighbor finding: numpy.ndarray
node_embs_raw = pickle.load(open(f'{args.datapath}{args.dataset}_embs-raw{args.embraw}.pkl', 'rb'))
# print('cf distance threshold: ', np.percentile(cdist(node_embs_raw, node_embs_raw, 'euclidean'), args.gamma))
if os.path.exists(T_file):
T_f, T_cf, adj_cf, edges_cf_t0, edges_cf_t1 = pickle.load(open(T_file, 'rb'))
logger.info(f'loaded cached T files: {args.t} {args.k}')
else:
T_f = get_t(adj_train, args.t, args.k, args.selfloopT)
T_cf, adj_cf, edges_cf_t0, edges_cf_t1 = get_CF(adj_train, node_embs_raw, T_f, args.dist, args.gamma, args.n_workers)
T_cf = sp.csr_matrix(T_cf)
adj_cf = sp.csr_matrix(adj_cf)
pickle.dump((T_f, T_cf, adj_cf, edges_cf_t0, edges_cf_t1), open(T_file, 'wb'))
logger.info(f'calculated and cached T files: {args.t} {args.k}')
return T_f, edges_cf_t1, edges_cf_t0, T_cf, adj_cf

def get_t(adj_mat, method, k, selfloop=False):
adj = copy.deepcopy(adj_mat)
if not selfloop:
adj.setdiag(0)
adj.eliminate_zeros()
if method == 'anchor_nodes':
T = anchor_nodes(adj, k)
elif method == 'common_neighbors':
T = common_neighbors(adj, k)
elif method == 'louvain':
T = louvain(adj)
elif method == 'spectral_clustering':
T = spectral_clustering(adj, k)
elif method == 'propagation':
T = propagation(adj)
elif method == 'kcore':
T = kcore(adj)
elif method == 'katz':
T = katz(adj, k)
elif method == 'hierarchy':
T = ward_hierarchy(adj, k)
elif method == 'jaccard':
T = jaccard_index(adj, k)
elif method == 'sbm':
T = SBM(adj, k)
return T

def SBM(adj, k):
nx_g = nx.from_scipy_sparse_matrix(adj)
standard_partition = pysbm.NxPartition(graph=nx_g, number_of_blocks=k)
rep = standard_partition.get_representation()
labels = np.asarray([v for k, v in sorted(rep.items(), key=lambda item: item[0])])
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T

def ward_hierarchy(adj, k):
ward = Ward()
dendrogram = ward.fit_transform(adj)
labels = cut_straight(dendrogram, k)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T

def jaccard_index(adj, k):
adj = adj.astype(int)
intrsct = adj.dot(adj.T)
row_sums = intrsct.diagonal()
unions = row_sums[:,None] + row_sums - intrsct
sim_matrix = intrsct / unions
thre = np.percentile(sim_matrix, (100-10*k))
thre = max(thre, np.percentile(sim_matrix, 0.5))
thre = min(thre, np.percentile(sim_matrix, 0.8))
T = np.asarray((sim_matrix >= thre).astype(int))
T = T - np.diag(T.diagonal())
return sp.csr_matrix(T)

def katz(adj, k):
max_eigvalue = eigs(adj.astype(float), k=1)[0][0]
beta = min(1/max_eigvalue/2, 0.003)
sim_matrix = inv(sp.identity(adj.shape[0]) - beta * adj) - sp.identity(adj.shape[0])
sim_matrix = sim_matrix.toarray()
size = sim_matrix.shape[0]
thre = 2 * k * sim_matrix.sum() / (size*size-1)
T = np.asarray((sim_matrix > thre).astype(int))
T = T - np.diag(T.diagonal())
return sp.csr_matrix(T)

def anchor_nodes(adj, k):
row_sum = np.asarray(adj.sum(axis = 1)).reshape(-1)
dist = dijkstra(csgraph=adj, indices=np.argmax(row_sum), directed=False, limit=k+1, return_predecessors=False)
res = dist < (k+1)
T = np.zeros(adj.shape)
T[res] += 1
T[:,res] += 1
T = (T > 1).astype(int)
return sp.csr_matrix(T)

def common_neighbors(adj, k):
mul_hop_adj = adj
for i in range(2):
mul_hop_adj += adj ** (i+2)
mul_hop_adj = (mul_hop_adj>0).astype(int)
T = (mul_hop_adj @ mul_hop_adj.T) >= k
T = T.astype(int)
return T

def louvain(adj):
louvain = Louvain()
labels = louvain.fit_transform(adj)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T

def propagation(adj):
propagation = PropagationClustering()
labels = propagation.fit_transform(adj)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T

def spectral_clustering(adj, k):
kmeans = KMeans(n_clusters = k, embedding_method=Spectral(256))
labels = kmeans.fit_transform(adj)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T

def kcore(adj):
G = nx.from_scipy_sparse_matrix(adj)
G.remove_edges_from(nx.selfloop_edges(G))
labels = np.array(list(nx.algorithms.core.core_number(G).values()))-1
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T

def sample_nodepairs(num_np, edges_f_t1, edges_f_t0, edges_cf_t1, edges_cf_t0):
# TODO: add sampling with separated treatments
nodepairs_f = np.concatenate((edges_f_t1, edges_f_t0), axis=0)
f_idx = np.random.choice(len(nodepairs_f), min(num_np,len(nodepairs_f)), replace=False)
np_f = nodepairs_f[f_idx]
nodepairs_cf = np.concatenate((edges_cf_t1, edges_cf_t0), axis=0)
cf_idx = np.random.choice(len(nodepairs_cf), min(num_np,len(nodepairs_f)), replace=False)
np_cf = nodepairs_cf[cf_idx]
return np_f, np_cf

def calc_disc(disc_func, z, nodepairs_f, nodepairs_cf):
X_f = torch.cat((z[nodepairs_f.T[0]], z[nodepairs_f.T[1]]), axis=1)
X_cf = torch.cat((z[nodepairs_cf.T[0]], z[nodepairs_cf.T[1]]), axis=1)
if disc_func == 'lin':
mean_f = X_f.mean(0)
mean_cf = X_cf.mean(0)
loss_disc = torch.sqrt(F.mse_loss(mean_f, mean_cf) + 1e-6)
elif disc_func == 'kl':
# TODO: kl divergence
pass
elif disc_func == 'w':
# Wasserstein distance
dist = SamplesLoss(loss="sinkhorn", p=2, blur=.05)
loss_disc = dist(X_cf, X_f)
else:
raise Exception('unsupported distance function for discrepancy loss')
return loss_disc

def get_CF(adj, node_embs, T_f, dist='euclidean', thresh=50, n_workers=20):
if dist == 'cosine':
# cosine similarity (flipped to use as a distance measure)
embs = normalize(node_embs, norm='l1', axis=1)
simi_mat = embs @ embs.T
simi_mat = 1 - simi_mat
elif dist == 'euclidean':
# Euclidean distance
simi_mat = cdist(node_embs, node_embs, 'euclidean')
thresh = np.percentile(simi_mat, thresh)
# give selfloop largest distance
np.fill_diagonal(simi_mat, np.max(simi_mat)+1)
# nearest neighbor nodes index for each node
node_nns = np.argsort(simi_mat, axis=1)
# find nearest CF node-pair for each node-pair
node_pairs = list(combinations(range(adj.shape[0]), 2))
print('This step may be slow, please adjust args.n_workers according to your machine')
pool = Pool(n_workers)
batches = np.array_split(node_pairs, n_workers)
results = pool.map(get_CF_single, [(adj, simi_mat, node_nns, T_f, thresh, np_batch, True) for np_batch in batches])
results = list(zip(*results))
T_cf = np.add.reduce(results[0])
adj_cf = np.add.reduce(results[1])
edges_cf_t0 = np.concatenate(results[2])
edges_cf_t1 = np.concatenate(results[3])
return T_cf, adj_cf, edges_cf_t0, edges_cf_t1,

def get_CF_single(params):
""" single process for getting CF edges """
adj, simi_mat, node_nns, T_f, thresh, node_pairs, verbose = params

T_cf = np.zeros(adj.shape)
adj_cf = np.zeros(adj.shape)
edges_cf_t0 = []
edges_cf_t1 = []
c = 0
for a, b in node_pairs:
# for each node pair (a,b), find the nearest node pair (c,d)
nns_a = node_nns[a]
nns_b = node_nns[b]
i, j = 0, 0
while i < len(nns_a)-1 and j < len(nns_b)-1:
if simi_mat[a, nns_a[i]] + simi_mat[b, nns_b[j]] > 2 * thresh:
T_cf[a, b] = T_f[a, b]
adj_cf[a, b] = adj[a, b]
break
if T_f[nns_a[i], nns_b[j]] != T_f[a, b]:
T_cf[a, b] = 1 - T_f[a, b] # T_f[nns_a[i], nns_b[j]] when treatment not binary
adj_cf[a, b] = adj[nns_a[i], nns_b[j]]
if T_cf[a, b] == 0:
edges_cf_t0.append([nns_a[i], nns_b[j]])
else:
edges_cf_t1.append([nns_a[i], nns_b[j]])
break
if simi_mat[a, nns_a[i+1]] < simi_mat[b, nns_b[j+1]]:
i += 1
else:
j += 1
c += 1
if verbose and c % 20000 == 0:
print(f'{c} / {len(node_pairs)} done')
edges_cf_t0 = np.asarray(edges_cf_t0)
edges_cf_t1 = np.asarray(edges_cf_t1)
return T_cf, adj_cf, edges_cf_t0, edges_cf_t1

3 changes: 3 additions & 0 deletions data/T_files/citeseer_kcore2-euclidean30.0-mvgrl.pkl
Git LFS file not shown
3 changes: 3 additions & 0 deletions data/T_files/cora_kcore2-euclidean30.0-mvgrl.pkl
Git LFS file not shown
3 changes: 3 additions & 0 deletions data/T_files/facebook_louvain2-euclidean30.0-mvgrl.pkl
Git LFS file not shown
3 changes: 3 additions & 0 deletions data/T_files/ogbl-ddi_louvain2-euclidean10.0-mvgrl.pkl
Git LFS file not shown
Binary file added data/citeseer_adj.pkl
Binary file not shown.
Binary file added data/citeseer_embs-rawmvgrl.pkl
Binary file not shown.
Binary file added data/citeseer_feat.pkl
Binary file not shown.
Binary file added data/citeseer_tvtEdges_val0.1test0.2.pkl
Binary file not shown.
Binary file added data/cora_adj.pkl
Binary file not shown.
Binary file added data/cora_embs-rawmvgrl.pkl
Binary file not shown.
Binary file added data/cora_feat.pkl
Binary file not shown.
Binary file added data/cora_tvtEdges_val0.1test0.2.pkl
Binary file not shown.
Loading

0 comments on commit 61980fd

Please sign in to comment.