Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dynamic Network and minor directory fixes and numpy latest version adaptability #9

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added networks/__pycache__/generators.cpython-310.pyc
Binary file not shown.
353 changes: 221 additions & 132 deletions networks/generators.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,140 +139,229 @@ def forward(self, x_thisBranch, x_otherBranch):

return z

class dualAtt_24(nn.Module):

def __init__(self):
super(dualAtt_24, self).__init__()

self.relu = nn.ReLU(inplace=True)
self.conv3d_7 = nn.Conv3d(in_channels=64, out_channels=16, kernel_size=1, stride=(1, 1, 1), padding=0)
self.pathC_bn1 = nn.BatchNorm3d(64)


self.conv3d_8 = nn.Conv3d(in_channels=16, out_channels=4, kernel_size=3, stride=(1, 1, 1), padding=1)

self.conv3d_9 = nn.Conv3d(in_channels=4, out_channels=1, kernel_size=3, stride=(1, 1, 1), padding=1)
self.pathC_bn2 = nn.BatchNorm3d(1)

self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 32)
self.fc3 = nn.Linear(32, 6)

"""layers for path global"""
self.path1_block1_conv = nn.Conv3d(
in_channels=1,
out_channels=32,
kernel_size=3,
stride=(1, 1, 1),
padding=1,
bias=False)
self.path1_block1_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal11 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.path1_block2_conv = nn.Conv3d(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=(1, 1, 1),
padding=1,
bias=False)
self.path1_block2_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal12 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(1,2,2), padding=1)
self.path1_block3_NLCross = NLBlockND_cross(32)

self.path2_block1_conv = nn.Conv3d(
in_channels=1,
out_channels=32,
kernel_size=3,
stride=(1, 1, 1),
padding=1,
bias=False)
self.path2_block1_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal21 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.path2_block2_conv = nn.Conv3d(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=(1, 1, 1),
padding=1,
bias=False)
self.path2_block2_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal22 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(1,2,2), padding=1)
self.path2_block3_NLCross = NLBlockND_cross(32)


for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def forward(self, x):
# total_start_time = time.time()
x_path1 = torch.unsqueeze(x[:, 0, :, :, :], 1)
x_path2 = torch.unsqueeze(x[:, 1, :, :, :], 1)

"""path global (attention)"""
x_path1 = self.path1_block1_conv(x_path1)
x_path1 = self.path1_block1_bn(x_path1)
x_path1 = self.relu(x_path1)
x_path1 = self.maxpool_downsample_pathGlobal11(x_path1)
# print(x_path1.shape)

x_path1 = self.path1_block2_conv(x_path1)
x_path1 = self.path1_block2_bn(x_path1)
x_path1 = self.relu(x_path1)
x_path1_0 = self.maxpool_downsample_pathGlobal12(x_path1)
# print(x_path1.shape)


x_path2 = self.path2_block1_conv(x_path2)
x_path2 = self.path2_block1_bn(x_path2)
x_path2 = self.relu(x_path2)
x_path2 = self.maxpool_downsample_pathGlobal21(x_path2)
# print(x_path2.shape)

x_path2 = self.path2_block2_conv(x_path2)
x_path2 = self.path2_block2_bn(x_path2)
x_path2 = self.relu(x_path2)
x_path2_0 = self.maxpool_downsample_pathGlobal22(x_path2)
# print(x_path2.shape)

x_path1 = self.path1_block3_NLCross(x_path1_0, x_path2_0)
x_path1 = self.relu(x_path1)

x_path2 = self.path2_block3_NLCross(x_path2_0, x_path1_0)
x_path2 = self.relu(x_path2)

x_pathC = torch.cat((x_path1, x_path2), 1)

"""path combined"""
x = x_pathC
x = self.pathC_bn1(x)

x = self.conv3d_7(x)
x = self.relu(x)
# class dualAtt_24(nn.Module):

# def __init__(self):
# super(dualAtt_24, self).__init__()

# self.relu = nn.ReLU(inplace=True)
# self.conv3d_7 = nn.Conv3d(in_channels=64, out_channels=16, kernel_size=1, stride=(1, 1, 1), padding=0)
# self.pathC_bn1 = nn.BatchNorm3d(64)


# self.conv3d_8 = nn.Conv3d(in_channels=16, out_channels=4, kernel_size=3, stride=(1, 1, 1), padding=1)

# self.conv3d_9 = nn.Conv3d(in_channels=4, out_channels=1, kernel_size=3, stride=(1, 1, 1), padding=1)
# self.pathC_bn2 = nn.BatchNorm3d(1)

# self.fc1 = nn.Linear(9216, 128)
# self.fc2 = nn.Linear(128, 32)
# self.fc3 = nn.Linear(32, 6)

# """layers for path global"""
# self.path1_block1_conv = nn.Conv3d(
# in_channels=1,
# out_channels=32,
# kernel_size=3,
# stride=(1, 1, 1),
# padding=1,
# bias=False)
# self.path1_block1_bn = nn.BatchNorm3d(32)
# self.maxpool_downsample_pathGlobal11 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
# self.path1_block2_conv = nn.Conv3d(
# in_channels=32,
# out_channels=32,
# kernel_size=3,
# stride=(1, 1, 1),
# padding=1,
# bias=False)
# self.path1_block2_bn = nn.BatchNorm3d(32)
# self.maxpool_downsample_pathGlobal12 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(1,2,2), padding=1)
# self.path1_block3_NLCross = NLBlockND_cross(32)

# self.path2_block1_conv = nn.Conv3d(
# in_channels=1,
# out_channels=32,
# kernel_size=3,
# stride=(1, 1, 1),
# padding=1,
# bias=False)
# self.path2_block1_bn = nn.BatchNorm3d(32)
# self.maxpool_downsample_pathGlobal21 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
# self.path2_block2_conv = nn.Conv3d(
# in_channels=32,
# out_channels=32,
# kernel_size=3,
# stride=(1, 1, 1),
# padding=1,
# bias=False)
# self.path2_block2_bn = nn.BatchNorm3d(32)
# self.maxpool_downsample_pathGlobal22 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(1,2,2), padding=1)
# self.path2_block3_NLCross = NLBlockND_cross(32)


# for m in self.modules():
# if isinstance(m, nn.Conv3d):
# m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
# elif isinstance(m, nn.BatchNorm3d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()

# def forward(self, x):
# # total_start_time = time.time()
# x_path1 = torch.unsqueeze(x[:, 0, :, :, :], 1)
# x_path2 = torch.unsqueeze(x[:, 1, :, :, :], 1)

# """path global (attention)"""
# x_path1 = self.path1_block1_conv(x_path1)
# x_path1 = self.path1_block1_bn(x_path1)
# x_path1 = self.relu(x_path1)
# x_path1 = self.maxpool_downsample_pathGlobal11(x_path1)
# # print(x_path1.shape)

# x_path1 = self.path1_block2_conv(x_path1)
# x_path1 = self.path1_block2_bn(x_path1)
# x_path1 = self.relu(x_path1)
# x_path1_0 = self.maxpool_downsample_pathGlobal12(x_path1)
# # print(x_path1.shape)


# x_path2 = self.path2_block1_conv(x_path2)
# x_path2 = self.path2_block1_bn(x_path2)
# x_path2 = self.relu(x_path2)
# x_path2 = self.maxpool_downsample_pathGlobal21(x_path2)
# # print(x_path2.shape)

# x_path2 = self.path2_block2_conv(x_path2)
# x_path2 = self.path2_block2_bn(x_path2)
# x_path2 = self.relu(x_path2)
# x_path2_0 = self.maxpool_downsample_pathGlobal22(x_path2)
# # print(x_path2.shape)

# x_path1 = self.path1_block3_NLCross(x_path1_0, x_path2_0)
# x_path1 = self.relu(x_path1)

# x_path2 = self.path2_block3_NLCross(x_path2_0, x_path1_0)
# x_path2 = self.relu(x_path2)

# x_pathC = torch.cat((x_path1, x_path2), 1)

# """path combined"""
# x = x_pathC
# x = self.pathC_bn1(x)

# x = self.conv3d_7(x)
# x = self.relu(x)

# x = self.conv3d_8(x)
# x = self.relu(x)

# x = self.conv3d_9(x)
# x = self.pathC_bn2(x)

# x = x.view(x.size()[0], -1)
# x = self.relu(x)

# x = self.fc1(x)
# x = self.relu(x)

# x = self.fc2(x)
# x = self.relu(x)

# x = self.fc3(x)
# # time_cost = time.time() - total_start_time
# # print('1 whole cycle time cost {}s'.format(time_cost))
# # time.sleep(30)
# return x

x = self.conv3d_8(x)
x = self.relu(x)

x = self.conv3d_9(x)
x = self.pathC_bn2(x)

x = x.view(x.size()[0], -1)
x = self.relu(x)

x = self.fc1(x)
x = self.relu(x)

x = self.fc2(x)
x = self.relu(x)
class dualAtt_24(nn.Module):
def __init__(self):
super(dualAtt_24, self).__init__()

self.relu = nn.ReLU(inplace=True)
self.conv3d_7 = nn.Conv3d(in_channels=64, out_channels=16, kernel_size=1, stride=(1, 1, 1), padding=0)
self.pathC_bn1 = nn.BatchNorm3d(64)

self.conv3d_8 = nn.Conv3d(in_channels=16, out_channels=4, kernel_size=3, stride=(1, 1, 1), padding=1)

self.conv3d_9 = nn.Conv3d(in_channels=4, out_channels=1, kernel_size=3, stride=(1, 1, 1), padding=1)
self.pathC_bn2 = nn.BatchNorm3d(1)

self.fc1 = None # Defined dynamically below
self.fc2 = nn.Linear(128, 32)
self.fc3 = nn.Linear(32, 6)

"""layers for path global"""
self.path1_block1_conv = nn.Conv3d(in_channels=1, out_channels=32, kernel_size=3, stride=(1, 1, 1), padding=1, bias=False)
self.path1_block1_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal11 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.path1_block2_conv = nn.Conv3d(in_channels=32, out_channels=32, kernel_size=3, stride=(1, 1, 1), padding=1, bias=False)
self.path1_block2_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal12 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=1)
self.path1_block3_NLCross = NLBlockND_cross(32)

self.path2_block1_conv = nn.Conv3d(in_channels=1, out_channels=32, kernel_size=3, stride=(1, 1, 1), padding=1, bias=False)
self.path2_block1_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal21 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.path2_block2_conv = nn.Conv3d(in_channels=32, out_channels=32, kernel_size=3, stride=(1, 1, 1), padding=1, bias=False)
self.path2_block2_bn = nn.BatchNorm3d(32)
self.maxpool_downsample_pathGlobal22 = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=1)
self.path2_block3_NLCross = NLBlockND_cross(32)

def forward(self, x):
x_path1 = torch.unsqueeze(x[:, 0, :, :, :], 1)
x_path2 = torch.unsqueeze(x[:, 1, :, :, :], 1)

x_path1 = self.path1_block1_conv(x_path1)
x_path1 = self.path1_block1_bn(x_path1)
x_path1 = self.relu(x_path1)
x_path1 = self.maxpool_downsample_pathGlobal11(x_path1)

x_path1 = self.path1_block2_conv(x_path1)
x_path1 = self.path1_block2_bn(x_path1)
x_path1 = self.relu(x_path1)
x_path1_0 = self.maxpool_downsample_pathGlobal12(x_path1)

x_path2 = self.path2_block1_conv(x_path2)
x_path2 = self.path2_block1_bn(x_path2)
x_path2 = self.relu(x_path2)
x_path2 = self.maxpool_downsample_pathGlobal21(x_path2)

x_path2 = self.path2_block2_conv(x_path2)
x_path2 = self.path2_block2_bn(x_path2)
x_path2 = self.relu(x_path2)
x_path2_0 = self.maxpool_downsample_pathGlobal22(x_path2)

x_path1 = self.path1_block3_NLCross(x_path1_0, x_path2_0)
x_path1 = self.relu(x_path1)

x_path2 = self.path2_block3_NLCross(x_path2_0, x_path1_0)
x_path2 = self.relu(x_path2)

x_pathC = torch.cat((x_path1, x_path2), 1)

x = x_pathC
x = self.pathC_bn1(x)
x = self.conv3d_7(x)
x = self.relu(x)
x = self.conv3d_8(x)
x = self.relu(x)
x = self.conv3d_9(x)
x = self.pathC_bn2(x)
x = x.view(x.size()[0], -1)

# Dynamically set the input size of fc1
if self.fc1 is None:
self.fc1 = nn.Linear(x.size(1), 128).to(x.device)

x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)

return x

x = self.fc3(x)
# time_cost = time.time() - total_start_time
# print('1 whole cycle time cost {}s'.format(time_cost))
# time.sleep(30)
return x
class dualAtt_25(nn.Module):

def __init__(self):
Expand Down
Binary file not shown.
Binary file not shown.
Loading