- metrics:所有的指标与指标相关的loss,所有的输入都是$$(B,C,H,W)$$形状的张量
- __init__:用于集合所有的指标与loss,方便导入
- ssim:(VIFB,Structural similarly-based)Structural Similarity index measure
- rmse:(VIFB,Structural similarly-based)Root mean squared error
- ce:(VIFB,Information theory-based)Cross entropy
- en:(VIFB,Information theory-based)Entropy
- mi:(VIFB,Information theory-based)Mutural information
- psnr:(VIFB,Information theory-based)Peak signal-to-noise ration
- ag:(VIFB,Image feature-based)Average gradient
- ei:(VIFB,Image feature-based)Edge intensity
- sd:(VIFB,Image feature-based)Standard deviation
- sf:(VIFB,Image feature-based)Spatial frequency
-
$$Q^{AB/F}$$ :(VIFB,Image feature-based)Gradient-based fusion performance -
$$Q_{CB}$$ :(VIFB,Human perception inspired)Chen-Blum metric -
$$Q_{CV}$$ :(VIFB,Human perception inspired)Chen-Varsheny metric
- imgs:所有的图片
- RoadScene、TNO:数据集
- ir:红外图片
- vis:可见光图片
- fuse:融合图片
- U2Fusion等融合方式
- RoadScene、TNO:数据集
-
读入图片
from utils import * # 通过路径直接导入 ir_tensor = read_grey_tensor('./imgs/TNO/ir/1.bmp',requires_grad=False) vis_tensor = read_grey_tensor('./imgs/TNO/vis/1.bmp',requires_grad=False) fuse_tensor = read_grey_tensor('./imgs/TNO/fuse/U2Fusion/1.bmp',requires_grad=True) # 通过信息间接导入 ir_tensor = read_grey_tensor(dataset='TNO',category='ir',name='1.bmp',requires_grad=False) vis_tensor = read_grey_tensor(dataset='TNO',category='vis',name='1.bmp',requires_grad=False) fuse_tensor = read_grey_tensor(dataset='TNO',category='fuse',name='1.bmp',model='U2Fusion',requires_grad=True)