Skip to content

CharlesShan-hub/MetricsLab

Repository files navigation

MetricsLab

文件目录

  • metrics:所有的指标与指标相关的loss,所有的输入都是$$(B,C,H,W)$$形状的张量
    • __init__:用于集合所有的指标与loss,方便导入
    • ssim:(VIFB,Structural similarly-based)Structural Similarity index measure
    • rmse:(VIFB,Structural similarly-based)Root mean squared error
    • ce:(VIFB,Information theory-based)Cross entropy
    • en:(VIFB,Information theory-based)Entropy
    • mi:(VIFB,Information theory-based)Mutural information
    • psnr:(VIFB,Information theory-based)Peak signal-to-noise ration
    • ag:(VIFB,Image feature-based)Average gradient
    • ei:(VIFB,Image feature-based)Edge intensity
    • sd:(VIFB,Image feature-based)Standard deviation
    • sf:(VIFB,Image feature-based)Spatial frequency
    • $$Q^{AB/F}$$:(VIFB,Image feature-based)Gradient-based fusion performance
    • $$Q_{CB}$$:(VIFB,Human perception inspired)Chen-Blum metric
    • $$Q_{CV}$$:(VIFB,Human perception inspired)Chen-Varsheny metric
  • imgs:所有的图片
    • RoadScene、TNO:数据集
      • ir:红外图片
      • vis:可见光图片
      • fuse:融合图片
        • U2Fusion等融合方式

Demo

  1. 读入图片

    from utils import *
    
    # 通过路径直接导入
    ir_tensor = read_grey_tensor('./imgs/TNO/ir/1.bmp',requires_grad=False)
    vis_tensor = read_grey_tensor('./imgs/TNO/vis/1.bmp',requires_grad=False)
    fuse_tensor = read_grey_tensor('./imgs/TNO/fuse/U2Fusion/1.bmp',requires_grad=True)
    
    # 通过信息间接导入
    ir_tensor = read_grey_tensor(dataset='TNO',category='ir',name='1.bmp',requires_grad=False)
    vis_tensor = read_grey_tensor(dataset='TNO',category='vis',name='1.bmp',requires_grad=False)
    fuse_tensor = read_grey_tensor(dataset='TNO',category='fuse',name='1.bmp',model='U2Fusion',requires_grad=True)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published