Skip to content

1ytic/pytorch-edit-distance

Repository files navigation

PyTorch edit-distance functions

Useful functions for E2E Speech Recognition training with PyTorch and CUDA.

Here is a simple use case with Reinforcement Learning and RNN-T loss:

blank = torch.tensor([0], dtype=torch.int).cuda()
space = torch.tensor([1], dtype=torch.int).cuda()

xs = model.greedy_decode(xs, sampled=True)

torch_edit_distance.remove_blank(xs, xn, blank)

rewards = 1 - torch_edit_distance.compute_wer(xs, ys, xn, yn, blank, space)

nll = rnnt_loss(zs, ys, xn, yn)

loss = nll * rewards

levenshtein_distance

Levenshtein edit-distance with detailed statistics for ins/del/sub operations.

collapse_repeated

Merge repeated tokens, useful for CTC-based model.

remove_blank

Remove unnecessary blank tokens, useful for CTC, RNN-T, RNA models.

strip_separator

Remove leading, trailing and repeated middle separators.

Requirements

  • C++11 compiler (tested with GCC 9.4.0).
  • Python: 3.5, 3.6, 3.7, 3.8, 3.9 (tested with version 3.8).
  • PyTorch >= 1.5.0 (tested with version 1.13.1+cu116).
  • CUDA Toolkit (tested with version 11.2).

Install

There is no compiled version of the package. The following setup instructions compile the package from the source code locally.

From Pypi

pip install torch_edit_distance

From GitHub

git clone https://github.com/1ytic/pytorch-edit-distance
cd pytorch-edit-distance
python setup.py install

Test

python -m torch_edit_distance.test

About

Levenshtein edit-distance on PyTorch and CUDA

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published