Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: Update VectorStoreIndex trait #42

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions rig-core/examples/vector_search.rs
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
use std::env;

use rig::{
embeddings::EmbeddingsBuilder,
embeddings::{DocumentEmbeddings, EmbeddingsBuilder},
providers::openai::Client,
vector_store::{in_memory_store::InMemoryVectorIndex, VectorStoreIndex},
};
Expand All @@ -24,13 +24,22 @@ async fn main() -> Result<(), anyhow::Error> {
let index = InMemoryVectorIndex::from_embeddings(model, embeddings).await?;

let results = index
.top_n_from_query("What is a linglingdong?", 1)
.top_n::<DocumentEmbeddings>("What is a linglingdong?", 1)
.await?
.into_iter()
.map(|(score, doc)| (score, doc.id, doc.document))
.map(|(score, id, doc)| (score, id, doc.document))
.collect::<Vec<_>>();

println!("Results: {:?}", results);

let id_results = index
.top_n_ids("What is a linglingdong?", 1)
.await?
.into_iter()
.map(|(score, id)| (score, id))
.collect::<Vec<_>>();

println!("ID results: {:?}", id_results);

Ok(())
}
6 changes: 3 additions & 3 deletions rig-core/examples/vector_search_cohere.rs
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
use std::env;

use rig::{
embeddings::EmbeddingsBuilder,
embeddings::{DocumentEmbeddings, EmbeddingsBuilder},
providers::cohere::Client,
vector_store::{in_memory_store::InMemoryVectorStore, VectorStore, VectorStoreIndex},
};
Expand Down Expand Up @@ -29,10 +29,10 @@ async fn main() -> Result<(), anyhow::Error> {
let index = vector_store.index(search_model);

let results = index
.top_n_from_query("What is a linglingdong?", 1)
.top_n::<DocumentEmbeddings>("What is a linglingdong?", 1)
.await?
.into_iter()
.map(|(score, doc)| (score, doc.id, doc.document))
.map(|(score, id, doc)| (score, id, doc.document))
.collect::<Vec<_>>();

println!("Results: {:?}", results);
Expand Down
16 changes: 8 additions & 8 deletions rig-core/src/agent.rs
Original file line number Diff line number Diff line change
Expand Up @@ -172,17 +172,17 @@ impl<M: CompletionModel> Completion<M> for Agent<M> {
.then(|(num_sample, index)| async {
Ok::<_, VectorStoreError>(
index
.top_n_from_query(prompt, *num_sample)
.top_n(prompt, *num_sample)
.await?
.into_iter()
.map(|(_, doc)| {
.map(|(_, id, doc)| {
// Pretty print the document if possible for better readability
let doc_text = serde_json::to_string_pretty(&doc.document)
.unwrap_or_else(|_| doc.document.to_string());
let text = serde_json::to_string_pretty(&doc)
.unwrap_or_else(|_| doc.to_string());

Document {
id: doc.id,
text: doc_text,
id,
text,
additional_props: HashMap::new(),
}
})
Expand All @@ -200,10 +200,10 @@ impl<M: CompletionModel> Completion<M> for Agent<M> {
.then(|(num_sample, index)| async {
Ok::<_, VectorStoreError>(
index
.top_n_ids_from_query(prompt, *num_sample)
.top_n_ids(prompt, *num_sample)
.await?
.into_iter()
.map(|(_, doc)| doc)
.map(|(_, id)| id)
.collect::<Vec<_>>(),
)
})
Expand Down
120 changes: 72 additions & 48 deletions rig-core/src/vector_store/in_memory_store.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,53 @@ pub struct InMemoryVectorStore {
embeddings: HashMap<String, DocumentEmbeddings>,
}

impl InMemoryVectorStore {
/// Implement vector search on InMemoryVectorStore.
/// To be used by implementations of top_n and top_n_ids methods on VectorStoreIndex trait for InMemoryVectorStore.
fn vector_search(&self, prompt_embedding: &Embedding, n: usize) -> EmbeddingRanking {
// Sort documents by best embedding distance
let mut docs: EmbeddingRanking = BinaryHeap::new();

for (id, doc_embeddings) in self.embeddings.iter() {
// Get the best context for the document given the prompt
if let Some((distance, embed_doc)) = doc_embeddings
.embeddings
.iter()
.map(|embedding| {
(
OrderedFloat(embedding.distance(prompt_embedding)),
&embedding.document,
)
})
.min_by(|a, b| a.0.cmp(&b.0))
{
docs.push(Reverse(RankingItem(
distance,
id,
doc_embeddings,
embed_doc,
)));
};

// If the heap size exceeds n, pop the least old element.
if docs.len() > n {
docs.pop();
}
}

// Log selected tools with their distances
tracing::info!(target: "rig",
"Selected documents: {}",
docs.iter()
.map(|Reverse(RankingItem(distance, id, _, _))| format!("{} ({})", id, distance))
.collect::<Vec<String>>()
.join(", ")
);

docs
}
}

/// RankingItem(distance, document_id, document, embed_doc)
#[derive(Eq, PartialEq)]
struct RankingItem<'a>(
Expand Down Expand Up @@ -198,63 +245,40 @@ impl<M: EmbeddingModel> InMemoryVectorIndex<M> {
}

impl<M: EmbeddingModel + std::marker::Sync> VectorStoreIndex for InMemoryVectorIndex<M> {
async fn top_n_from_query(
async fn top_n<T: for<'a> Deserialize<'a>>(
&self,
query: &str,
n: usize,
) -> Result<Vec<(f64, DocumentEmbeddings)>, VectorStoreError> {
let prompt_embedding = self.model.embed_document(query).await?;
self.top_n_from_embedding(&prompt_embedding, n).await
) -> Result<Vec<(f64, String, T)>, VectorStoreError> {
let prompt_embedding = &self.model.embed_document(query).await?;

let docs = self.store.vector_search(prompt_embedding, n);

// Return n best
docs.into_iter()
.map(|Reverse(RankingItem(distance, _, doc, _))| {
let doc_value = serde_json::to_value(doc).map_err(VectorStoreError::JsonError)?;
Ok((
distance.0,
doc.id.clone(),
serde_json::from_value(doc_value).map_err(VectorStoreError::JsonError)?,
))
})
.collect::<Result<Vec<_>, _>>()
}

async fn top_n_from_embedding(
async fn top_n_ids(
&self,
query_embedding: &Embedding,
query: &str,
n: usize,
) -> Result<Vec<(f64, DocumentEmbeddings)>, VectorStoreError> {
// Sort documents by best embedding distance
let mut docs: EmbeddingRanking = BinaryHeap::new();

for (id, doc_embeddings) in self.store.embeddings.iter() {
// Get the best context for the document given the prompt
if let Some((distance, embed_doc)) = doc_embeddings
.embeddings
.iter()
.map(|embedding| {
(
OrderedFloat(embedding.distance(query_embedding)),
&embedding.document,
)
})
.min_by(|a, b| a.0.cmp(&b.0))
{
docs.push(Reverse(RankingItem(
distance,
id,
doc_embeddings,
embed_doc,
)));
};

// If the heap size exceeds n, pop the least old element.
if docs.len() > n {
docs.pop();
}
}
) -> Result<Vec<(f64, String)>, VectorStoreError> {
let prompt_embedding = &self.model.embed_document(query).await?;

// Log selected tools with their distances
tracing::info!(target: "rig",
"Selected documents: {}",
docs.iter()
.map(|Reverse(RankingItem(distance, id, _, _))| format!("{} ({})", id, distance))
.collect::<Vec<String>>()
.join(", ")
);
let docs = self.store.vector_search(prompt_embedding, n);

// Return n best
Ok(docs
.into_iter()
.map(|Reverse(RankingItem(distance, _, doc, _))| (distance.0, doc.clone()))
.collect())
docs.into_iter()
.map(|Reverse(RankingItem(distance, _, doc, _))| Ok((distance.0, doc.id.clone())))
.collect::<Result<Vec<_>, _>>()
}
}
Loading