forked from XuewuOx/MASTSyncSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLMI.m
305 lines (247 loc) · 8.01 KB
/
LMI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Description: This LMI is for the paper 'Chang2020' (Theorem 1), it can be
% used to solve the problem of dynamic controller
%
% This function is based on LMI_Stability_Chang2014_case_2.m
% Author: Yan Zong
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [gamma, K] = Optim_fun(alpha, beta)
% function Gamma = Optim_fun(theta, epsilon)
theta=7.9201
epsilon=0.1499
%%% system parameters
A=[1 1; 0 1];
B=[1 0; 0 1];
E=[1 0 0 0 -1; 0 1 0 0 0];
C1=[1 0];
F=[0 0 1 0 0];
D=zeros(1,2);
C2=[1 0;0 1];
H=[0 0 1 0 0;0 0 0 1 0];
n_x=2; % x的维数为2*1
m_u=2; % u的维数为2*1
q_z=1; % z的维数为1*1
f_y=2; % y的维数为2*1
v_w=5; % w的维数为5*1
% adjusting matrix N^(n+v,n+q): three cases
% Case 1: if v>q, N=[eye(n_x+q_z); zeros(v_w-q_z,n_x+q_z)]
N1=eye(2); % 2x2
N2=zeros(2); % 2x2
N3=zeros(2,1); % 2x1
N4=zeros(2); % 2x2
N5=eye(2); % 2x2
N6=[0;0]; % 2x1
N7=[zeros(1,2)]; % 1x2
N8=[zeros(1,2)]; % 1x2
N9=eye(1); % 1x1
N=[N1 N2 N3; N4 N5 N6; N7 N8 N9];
%-------Initial a LMI system--------
setlmis([]);
% U=[U1 U2; U3 U4]
U1=lmivar(2,[2 2]); % 2x2 matrix
U2=lmivar(2,[2 2]); % 2x2 matrix
U3=lmivar(2,[2 2]); % 2x2 matrix
U4=lmivar(2,[2 2]); % 2x2 matrix
% V=[V1 V2; V3 V4]
V1=lmivar(2,[2 2]); % 2x2 matrix
V2=lmivar(2,[2 2]); % 2x2 matrix
V3=lmivar(2,[2 2]); % 2x2 matrix
V4=lmivar(2,[2 2]); % 2x2 matrix
% P=[P1 P2; P3 P4]
P1=lmivar(2,[2 2]); % 2x2 matrix
P2=lmivar(2,[2 2]); % 2x2 matrix
P3=lmivar(2,[2 2]); % 2x2 matrix
P4=lmivar(2,[2 2]); % 2x2 matrix
% G=[G1 G2 G3; G4 G5 G6; G7 G8 G9]
G1=lmivar(2,[2 2]); % 2x2 matrix
G2=lmivar(2,[2 2]); % 2x2 matrix
G3=lmivar(2,[2 1]); % 1x1 matrix
G4=lmivar(2,[2 2]); % 2x2 matrix
G5=lmivar(2,[2 2]); % 2x2 matrix
G6=lmivar(2,[2 1]); % 1x1 matrix
G7=lmivar(2,[1 2]); % 1x1 matrix
G8=lmivar(2,[1 2]); % 1x1 matrix
G9=lmivar(2,[1 1]); % 1x1 matrix
gamma=lmivar(1,[1 1]); % 1x1 symmetric matrix % performance index
%----------L=1 1*1---------
% the first LMI
lmiterm([1 1 1 P1],-1,1);
lmiterm([1 1 1 P2],-1,1);
lmiterm([1 1 1 P3],-1,1);
lmiterm([1 1 1 P4],-1,1);
%----------L=2 8*8---------
% the second LMI
% (1, 1)
lmiterm([2 1 1 P1],-1,1);
lmiterm([2 1 1 V4],epsilon*N1*B,C2,'s');
lmiterm([2 1 1 V2],epsilon*N2,C2,'s');
lmiterm([2 1 1 V4],epsilon*N3*D,C2,'s');
% (2, 1)
lmiterm([2 2 1 P3],-1,1);
lmiterm([2 2 1 V4],epsilon*N4*B,C2);
lmiterm([2 2 1 V2],epsilon*N5,C2);
lmiterm([2 2 1 V4],epsilon*N6*D,C2);
lmiterm([2 1 2 V3],epsilon*N1*B,1);
lmiterm([2 1 2 V1],epsilon*N2,1);
lmiterm([2 1 2 V3],epsilon*N3*D,1);
% (2, 2)
lmiterm([2 2 2 P4],-1,1);
lmiterm([2 2 2 V3],epsilon*N4*B,1,'s');
lmiterm([2 2 2 V1],epsilon*N5,1,'s');
lmiterm([2 2 2 V3],epsilon*N6*D,1,'s');
% (3, 1)
lmiterm([2 3 1 V4],epsilon*N7*B,C2);
lmiterm([2 3 1 V2],epsilon*N8,C2);
lmiterm([2 3 1 V4],epsilon*N9*D,C2);
lmiterm([2 1 3 V4],epsilon*N1*B,H);
lmiterm([2 1 3 V2],epsilon*N2,H);
lmiterm([2 1 3 V4],epsilon*N3*D,H);
% (3, 2)
lmiterm([2 3 2 V3],epsilon*N7*B,1);
lmiterm([2 3 2 V1],epsilon*N8,1);
lmiterm([2 3 2 V3],epsilon*N9*D,1);
lmiterm([2 2 3 V4],epsilon*N4*B,H);
lmiterm([2 2 3 V2],epsilon*N5,H);
lmiterm([2 2 3 V4],epsilon*N6*D,H);
% (3, 3)
lmiterm([2 3 3 gamma],-1,1);
lmiterm([2 3 3 V4],epsilon*N7*B,H,'s');
lmiterm([2 3 3 V2],epsilon*N8,H,'s');
lmiterm([2 3 3 V4],epsilon*N9*D,H,'s');
% (4, 1)
lmiterm([2 4 1 G1],1,A);
lmiterm([2 4 1 G3],1,C1);
lmiterm([2 4 1 V4],B,C2);
% (4, 2)
lmiterm([2 4 2 V3],B,1);
% (4, 3)
lmiterm([2 4 3 G1],1,E);
lmiterm([2 4 3 G3],1,F);
lmiterm([2 4 3 V4],B,H);
% (4, 4)
lmiterm([2 4 4 G1],-1,1,'s');
lmiterm([2 4 4 P1],1,1);
% (5, 1)
lmiterm([2 5 1 G4],1,A);
lmiterm([2 5 1 G6],1,C1);
lmiterm([2 5 1 V2],1,C2);
% (5, 2)
lmiterm([2 5 2 V1],1,1);
% (5, 3)
lmiterm([2 5 3 G4],1,E);
lmiterm([2 5 3 G6],1,F);
lmiterm([2 5 3 V2],1,H);
% (5, 4)
lmiterm([2 5 4 G4],-1,1);
lmiterm([2 4 5 G2],-1,1);
lmiterm([2 5 4 P3],1,1);
% (5, 5)
lmiterm([2 5 5 G5],-1,1,'s');
lmiterm([2 5 5 P4],1,1);
% (6, 1)
lmiterm([2 6 1 G7],1,A);
lmiterm([2 6 1 G9],1,C1);
lmiterm([2 6 1 V4],D,C2);
% (6, 2)
lmiterm([2 6 2 V3],D,1);
% (6, 3)
lmiterm([2 6 3 G7],1,E);
lmiterm([2 6 3 G9],1,F);
lmiterm([2 6 3 V4],D,H);
% (6, 4)
lmiterm([2 6 4 G7],-1,1);
lmiterm([2 4 6 G3],-1,1);
% (6, 5)
lmiterm([2 6 5 G8],-1,1);
lmiterm([2 5 6 G6],-1,1);
% (6, 6)
lmiterm([2 6 6 G9],-1,1,'s');
lmiterm([2 6 6 0],1);
% (7, 1)
lmiterm([2 7 1 V2],1,C2);
lmiterm([2 1 7 U3],-epsilon*N1*B,1);
lmiterm([2 1 7 U1],-epsilon*N2,1);
lmiterm([2 1 7 U3],-epsilon*N3*D,1);
% (7, 2)
lmiterm([2 7 2 V1],1,1);
lmiterm([2 2 7 U3],-epsilon*N4*B,1);
lmiterm([2 2 7 U1],-epsilon*N5,1);
lmiterm([2 2 7 U3],-epsilon*N6*D,1);
% (7, 3)
lmiterm([2 7 3 V2],1,H);
lmiterm([2 3 7 U3],-epsilon*N7*B,1);
lmiterm([2 3 7 U1],-epsilon*N8,1);
lmiterm([2 3 7 U3],-epsilon*N9*D,1);
% (7, 4)
lmiterm([2 4 7 G2],theta,1);
lmiterm([2 4 7 U3],B,-1);
% (7, 5)
lmiterm([2 5 7 G5],theta,1);
lmiterm([2 5 7 U1],-1,1);
% (7, 6)
lmiterm([2 6 7 G8],theta,1);
lmiterm([2 6 7 U3],D,-1);
% (7, 7)
lmiterm([2 7 7 U1],-1,1,'s');
% (8, 1)
lmiterm([2 8 1 V4],(B'*B+D'*D),C2);
lmiterm([2 1 8 U4],-epsilon*N1*B,1);
lmiterm([2 1 8 U2],-epsilon*N2,1);
lmiterm([2 1 8 U4],-epsilon*N3*D,1);
% (8, 2)
lmiterm([2 8 2 V3],(B'*B+D'*D),1);
lmiterm([2 2 8 U4],-epsilon*N4*B,1);
lmiterm([2 2 8 U2],-epsilon*N5,1);
lmiterm([2 2 8 U4],-epsilon*N6*D,1);
% (8, 3)
lmiterm([2 8 3 V4],(B'*B+D'*D),H);
lmiterm([2 3 8 U4],-epsilon*N7*B,1);
lmiterm([2 3 8 U2],-epsilon*N8,1);
lmiterm([2 3 8 U4],-epsilon*N9*D,1);
% (8, 4)
lmiterm([2 4 8 G1],theta,B);
lmiterm([2 4 8 G3],theta,D);
lmiterm([2 4 8 U4],B,-1);
% (8, 5)
lmiterm([2 5 8 G4],theta,B);
lmiterm([2 5 8 G6],theta,D);
lmiterm([2 5 8 U2],-1,1);
% (8, 6)
lmiterm([2 6 8 G7],theta,B);
lmiterm([2 6 8 G9],theta,D);
lmiterm([2 6 8 U4],D,-1);
% (8, 7)
lmiterm([2 8 7 U3],(B'*B+D'*D),-1);
lmiterm([2 7 8 U2],1,-1);
% (8, 8)
lmiterm([2 8 8 U4],(B'*B+D'*D),-1,'s');
%%%%%%%%%%%优化gamma%%%%%%%%%%%%%%%%
lmis=getlmis;
n=decnbr(lmis); % the number of decision variables in LMI system
c=zeros(n,1); % n x 1 zeros
for j=1:n
[gaj]=defcx(lmis,j,gamma); % returns [gaj] of the matrix variables with gamma
% when the j-th decision variable is set to 1
% and all others to 0
c(j)=trace(gaj); % sum of diagonal elements.
end
options=[1e-5,500,0,0,0];
[copt,xopt]=mincx(lmis,c,options);
Gamma=sqrt(dec2mat(lmis,xopt,gamma));
u1=dec2mat(lmis,xopt,U1);
u2=dec2mat(lmis,xopt,U2);
u3=dec2mat(lmis,xopt,U3);
u4=dec2mat(lmis,xopt,U4);
u=[u1 u2; u3 u4];
v1=dec2mat(lmis,xopt,V1);
v2=dec2mat(lmis,xopt,V2);
v3=dec2mat(lmis,xopt,V3);
v4=dec2mat(lmis,xopt,V4);
v=[v1 v2; v3 v4];
K=theta*inv(u)*v;
% clear lmis, su1, su2, u1, u2, U;
% clear lmis, sv1, sv2, v1, v2, V;
% clear G1, G2, G3, G4, P, gamma;
% Gamma
% K
% end