jupyter |
jupytext |
kernelspec |
formats |
text_representation |
ipynb,md |
extension |
format_name |
format_version |
jupytext_version |
.md |
markdown |
1.3 |
1.13.8 |
|
|
display_name |
language |
name |
Python 3 (ipykernel) |
python |
python3 |
|
|
import geopandas as gpd
import matplotlib.pyplot as plt
%matplotlib inline
europe = gpd.read_file('resources/europe_shape.geojson')
europe.plot()
# Without GB, NO, SE, FI, LV, LT, EE
europe = gpd.read_file('resources/europe_shape.geojson')
europe.plot()
# The above plus GB
europe = gpd.read_file('resources/europe_shape.geojson')
europe.plot()
# The above minus IE and GB
europe = gpd.read_file('resources/europe_shape.geojson')
europe.plot()
import pypsa
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
plt.style.use("bmh")
%matplotlib inline
n = pypsa.Network("results/networks/elec_s_128_ec_lcopt_2H.nc")
# n.plot()
fig,ax = plt.subplots(
figsize=(30,30),
subplot_kw={"projection": ccrs.PlateCarree()}
)
max_marginal_price = n.buses_t.marginal_price.max().max()
min_marginal_price = n.buses_t.marginal_price.min().min()
colors = (n.buses_t.marginal_price.loc[n.snapshots[6]] - min_marginal_price) / (max_marginal_price - min_marginal_price)
display(n.buses_t.marginal_price)
n.plot(ax=ax, bus_colors=colors, bus_cmap=plt.cm.jet)
# n.plot(ax=ax, boundaries=(-9, 28, 30, 75))
ax.axis('off')
n = pypsa.Network("results/networks/elec_s_143_ec_lcopt_2H.nc")
display(n.buses_t.marginal_price)
for snapshot in n.snapshots[0:1]:
display(snapshot)
prices = bus_text=n.buses_t.marginal_price.loc[snapshot]
n.iplot(
mapbox=True,
size=(2000, 2000),
bus_text=prices,
bus_colors=prices,
line_text=None
)
n.lopf(
n.snapshots[0:2],
solver_name="cbc",
pyomo=False,
)