forked from yl4579/PL-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
175 lines (136 loc) · 5.66 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import string
import pickle
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from text_utils import TextCleaner
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
np.random.seed(1)
random.seed(1)
class FilePathDataset(torch.utils.data.Dataset):
def __init__(self, dataset,
token_maps="token_maps.pkl",
tokenizer="transfo-xl-wt103",
word_separator=3039,
token_separator=" ",
token_mask="M",
max_mel_length=512,
word_mask_prob=0.15,
phoneme_mask_prob=0.1,
replace_prob=0.2):
self.data = dataset
self.max_mel_length = max_mel_length
self.word_mask_prob = word_mask_prob
self.phoneme_mask_prob = phoneme_mask_prob
self.replace_prob = replace_prob
self.text_cleaner = TextCleaner()
self.word_separator = word_separator
self.token_separator = token_separator
self.token_mask = token_mask
with open(token_maps, 'rb') as handle:
self.token_maps = pickle.load(handle)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
phonemes = self.data[idx]['phonemes']
input_ids = self.data[idx]['input_ids']
words = []
labels = ""
phoneme = ""
phoneme_list = ''.join(phonemes)
masked_index = []
for z in zip(phonemes, input_ids):
z = list(z)
words.extend([z[1]] * len(z[0]))
words.append(self.word_separator)
labels += z[0] + " "
if np.random.rand() < self.word_mask_prob:
if np.random.rand() < self.replace_prob:
if np.random.rand() < (self.phoneme_mask_prob / self.replace_prob):
phoneme += ''.join([phoneme_list[np.random.randint(0, len(phoneme_list))] for _ in range(len(z[0]))]) # randomized
else:
phoneme += z[0]
else:
phoneme += self.token_mask * len(z[0]) # masked
masked_index.extend((np.arange(len(phoneme) - len(z[0]), len(phoneme))).tolist())
else:
phoneme += z[0]
phoneme += self.token_separator
mel_length = len(phoneme)
masked_idx = np.array(masked_index)
masked_index = []
if mel_length > self.max_mel_length:
random_start = np.random.randint(0, mel_length - self.max_mel_length)
phoneme = phoneme[random_start:random_start + self.max_mel_length]
words = words[random_start:random_start + self.max_mel_length]
labels = labels[random_start:random_start + self.max_mel_length]
for m in masked_idx:
if m >= random_start and m < random_start + self.max_mel_length:
masked_index.append(m - random_start)
else:
masked_index = masked_idx
phoneme = self.text_cleaner(phoneme)
labels = self.text_cleaner(labels)
words = [self.token_maps[w]['token'] for w in words]
assert len(phoneme) == len(words)
assert len(phoneme) == len(labels)
phonemes = torch.LongTensor(phoneme)
labels = torch.LongTensor(labels)
words = torch.LongTensor(words)
return phonemes, words, labels, masked_index
class Collater(object):
"""
Args:
adaptive_batch_size (bool): if true, decrease batch size when long data comes.
"""
def __init__(self, return_wave=False):
self.text_pad_index = 0
self.return_wave = return_wave
def __call__(self, batch):
# batch[0] = wave, mel, text, f0, speakerid
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[0] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
max_text_length = max([b[1].shape[0] for b in batch])
words = torch.zeros((batch_size, max_text_length)).long()
labels = torch.zeros((batch_size, max_text_length)).long()
phonemes = torch.zeros((batch_size, max_text_length)).long()
input_lengths = []
masked_indices = []
for bid, (phoneme, word, label, masked_index) in enumerate(batch):
text_size = phoneme.size(0)
words[bid, :text_size] = word
labels[bid, :text_size] = label
phonemes[bid, :text_size] = phoneme
input_lengths.append(text_size)
masked_indices.append(masked_index)
return words, labels, phonemes, input_lengths, masked_indices
def build_dataloader(df,
validation=False,
batch_size=4,
num_workers=1,
device='cpu',
collate_config={},
dataset_config={}):
dataset = FilePathDataset(df, **dataset_config)
collate_fn = Collater(**collate_config)
data_loader = DataLoader(dataset,
batch_size=batch_size,
shuffle=(not validation),
num_workers=num_workers,
drop_last=(not validation),
collate_fn=collate_fn,
pin_memory=(device != 'cpu'))
return data_loader