-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnumpy_implementation.py
51 lines (44 loc) · 1.6 KB
/
numpy_implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Copyright (c) 2020, Zolisa Bleki
SPDX-License-Identifier: BSD-3-Clause
This module provides a pure numpy implementation of the samplers implemented
by htnorm.
"""
import numpy as np
def hyperplane_truncated_mvnorm(mean, cov, G, r, diag=False, random_state=None):
rng = np.random.default_rng(random_state)
if diag:
cov_diag = np.diag(cov)
y = mean + cov_diag * rng.standard_normal(mean.shape[0])
covg = cov_diag[:, None] * G.T
else:
y = rng.multivariate_normal(mean, cov, method='cholesky')
covg = cov @ G.T
gcovg = G @ covg
alpha = np.linalg.solve(gcovg, r - G @ y)
return y + covg @ alpha
def structured_precision_mvnorm(mean, a, phi, omega, a_type=0, o_type=0, random_state=None):
rng = np.random.default_rng(random_state)
if a_type:
Ainv = 1 / np.diag(a)
y1 = rng.standard_normal(a.shape[0]) / np.sqrt(Ainv)
ainv_phi = Ainv[:, None] * phi.T
else:
Ainv = np.linalg.inv(a)
y1 = rng.multivariate_normal(
np.zeros(a.shape[0]), Ainv, method='cholesky'
)
ainv_phi = Ainv @ phi.T
if o_type:
omegainv = 1 / np.diag(omega)
y2 = rng.standard_normal(omega.shape[0]) / np.sqrt(omegainv)
alpha = np.linalg.solve(
np.diag(omegainv) + phi @ ainv_phi, phi @ y1 + y2
)
else:
omegainv = np.linalg.inv(omega)
y2 = rng.multivariate_normal(
np.zeros(omega.shape[0]), omegainv, method='cholesky'
)
alpha = np.linalg.solve(omegainv + phi @ ainv_phi, phi @ y1 + y2)
return mean + y1 - ainv_phi @ alpha