-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtest.py
200 lines (143 loc) · 7.59 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""generate images and videos of AG3D."""
import os
import click
import json
import tempfile
import copy
import torch
import numpy as np
import imageio
from tqdm import trange
import cv2
import PIL
import trimesh
import glob
import dnnlib
import utils.legacy as legacy
from metrics import metric_main
from metrics import metric_utils
from torch_utils import training_stats
from torch_utils import custom_ops
from torch_utils import misc
from torch_utils.ops import conv2d_gradfix
from utils.mesh_renderer import Renderer, render_trimesh
from utils.visualization_utils import gen_samples, gen_novel_view, calculate_rotation, gen_interp, gen_anim
# #----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--network', help='Network pickle filename or URL', metavar='PATH', required=True)
@click.option('--truncation', default=0.7, help='truncation_number', required=True)
@click.option('--pose_dist', help='Pose distribution of training dataset', metavar='[ZIP|DIR]')
@click.option('--res', help='Image resolution', type=int, default=256, metavar='INT', show_default=False)
@click.option('--output_path', help='Network pickle filename or URL', metavar='PATH', required=True)
@click.option('--number', help='Number of generation', metavar='INT', default=1, required=False)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid5k_full', show_default=True)
@click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True)
@click.option('--verbose', help='Print optional information', type=bool, default=True, metavar='BOOL', show_default=True)
@click.option('--type', help='Output type', type=str, default='gen_samples', metavar='STR', show_default=True)
@click.option('--motion_path', help='Motion path of animation', type=str, default=None, metavar='STR', show_default=True)
@click.option('--is_img', help='whether output rendered image', type=bool, default=True)
@click.option('--is_normal', help='whether output rendered normal', type=bool, default=False)
@click.option('--is_img_raw', help='whether output raw rendering', type=bool, default=False)
@click.option('--is_mesh', help='whether output rendered mesh', type=bool, default=False)
def visualization(ctx, network, truncation, pose_dist, res, output_path, number, gpus, verbose, metrics, type, motion_path, is_img, is_normal, is_img_raw, is_mesh):
"""generate rendering samples.
Examples:
\b
# pretrained mode in ./model, pose distribution in ./data
python test.py --metrics=fid5k_full --network=./model/deep_fashion.pkl \\
--pose_dist=./data/dp_pose_dist.npy --output_path './result/result2' --res=512 --truncation=0.7 --number=100 --type=gen_novel_view
"""
dnnlib.util.Logger(should_flush=True)
device = torch.device('cuda')
# Validate arguments.
args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network, verbose=verbose)
with dnnlib.util.open_url(network) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
from training.triplane import AG3DGenerator
print("Reloading Modules!")
G_new = AG3DGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device)
misc.copy_params_and_buffers(G, G_new, require_all=True)
G_new.neural_rendering_resolution = G.neural_rendering_resolution
G_new.rendering_kwargs = G.rendering_kwargs
G = G_new
args.G = G
# Locate run dir.
args.run_dir = None
if os.path.isfile(network):
pkl_dir = os.path.dirname(network)
if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')):
args.run_dir = pkl_dir
# Configure torch.
rank = 0
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
conv2d_gradfix.enabled = True
# Print network summary.
G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device)
G.rendering_kwargs.update({
'depth_resolution': 48,
'depth_resolution_importance': 48,
'ray_start': -0.5,
'ray_end': 0.5,
'box_warp': 1.9,
'white_back': True,
'avg_camera_radius': 1.7,
'avg_camera_pivot': [0, 0, 0],
'is_normal':True,
})
if rank == 0 and args.verbose:
z = torch.empty([1, G.z_dim], device=device)
c = torch.empty([1, G.c_dim], device=device)
misc.print_module_summary(G, [z, c])
# dataset = dnnlib.util.construct_class_by_name(**args.dataset_kwargs)
dataset = np.load(pose_dist)
if not os.path.exists(output_path):
os.makedirs(output_path)
with torch.no_grad():
zs = torch.randn([number, G.z_dim], device=device)
if 'gen_interp' in type:
zs1 = zs[:int(number/2)]
zs2 = zs[int(number/2):]
for _i in trange(len(zs1)):
n_steps = 8
z1 = zs1[_i:_i+1]
z2 = zs2[_i:_i+1]
c1 = torch.from_numpy(dataset[np.random.randint(len(dataset))]).pin_memory().to(device).unsqueeze(0)
c2 = torch.from_numpy(dataset[np.random.randint(len(dataset))]).pin_memory().to(device).unsqueeze(0)
save_path = f'{output_path}/{_i:05}_interp.png'
gen_interp(G, z1, z2, c1, c2, truncation, res, is_img, is_img_raw, is_normal, is_mesh, save_path, n_steps)
for _i in trange(len(zs)):
z = zs[_i:_i+1]
c = torch.from_numpy(dataset[np.random.randint(len(dataset))]).pin_memory().to(device).unsqueeze(0)
if 'gen_samples' in type:
save_path = f'{output_path}/{_i:05}.png'
gen_samples(G, z, c, truncation,res, is_img, is_img_raw, is_normal, is_mesh, save_path)
if 'gen_cano' in type:
save_path = f'{output_path}/{_i:05}_cano.png'
gen_samples(G, z, c, truncation,res, is_img, is_img_raw, is_normal, is_mesh, save_path, cano=True)
if 'gen_novel_view' in type:
save_path = f'{output_path}/{_i:05}.mp4'
full_rotation = False
if full_rotation:
angles = np.array(range(0, 361, 6))
else:
rotation_angle = 40
spacing = 8
angles = calculate_rotation(rotation_angle, spacing)
save_path = f'{output_path}/{_i:05}.mp4'
gen_novel_view(G, z, c, truncation,res, is_img, is_img_raw, is_normal, is_mesh, save_path, angles)
if 'gen_anim' in type:
save_path = f'{output_path}/{_i:05}_anim.mp4'
gen_anim(G, z, c, truncation,res, is_img, is_img_raw, is_normal, is_mesh, save_path, motion_path)
#----------------------------------------------------------------------------
if __name__ == "__main__":
visualization() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------