Skip to content

Latest commit

 

History

History
59 lines (50 loc) · 1.97 KB

README.md

File metadata and controls

59 lines (50 loc) · 1.97 KB

Answer-Driven Visual State Estimator for Goal-Oriented Visual Dialogue

This repository contains the code for the following paper:

@inproceedings{10.1145/3394171.3413668,
author = {Xu, Zipeng and Feng, Fangxiang and Wang, Xiaojie and Yang, Yushu and Jiang, Huixing and Wang, Zhongyuan},
title = {Answer-Driven Visual State Estimator for Goal-Oriented Visual Dialogue},
year = {2020},
booktitle = {Proceedings of the 28th ACM International Conference on Multimedia},
pages = {4271–4279}
}

This code is reimplemented as a fork of GuessWhatGame/guesswhat, which uses tensorflow.

Data

GuessWhat?! relies on two datasets:

  • the GuessWhat?! dataset that contains the dialogue inputs
  • The MS Coco dataset that contains the image inputs

Supervised Pretraining

Train Oracle:

python src/guesswhat/train/train_oracle.py \
   -config config/oracle/config.v1.json \
   -exp_dir out/oracle

Train ADVSE-QGen:

python src/guesswhat/train/train_qgen_supervised.py \
   -config config/qgen/config.advse.json \
   -exp_dir out/qgen 

Train ADVSE-Guesser:

python src/guesswhat/train/train_guesser.py \
   -config config/guesser/config.advse.json \
   -exp_dir out/guesser 

Reinforcement Learning

Based on the supervisedly pretrained models, we use REINFORCE to fine-tune the QGen model.

python src/guesswhat/train/train_qgen_reinforce.py
    -exp_dir out/loop/ \
    -config config/looper/config.advse8g.json \
    -networks_dir out/ \
    -oracle_identifier <oracle_identifier> \
    -qgen_identifier <qgen_identifier> \
    -guesser_identifier <guesser_identifier> \
    -evaluate_all false \
    -store_games true