forked from jpietari/mrf-linux-driver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflash.c
535 lines (449 loc) · 12.2 KB
/
flash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*
flash.c -- Micro-Research Event Receiver TG Linux 2.6 driver
M25P32/64 flash functions
Author: Jukka Pietarinen (MRF)
Date: 6.5.2010
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h> // Needed for the macros
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/cdev.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/version.h>
#include <linux/sched.h>
#include <asm/uaccess.h>
#include "pci_mrfev.h"
int spi_wait_tmt(struct mrf_dev *ev_dev)
{
volatile u32 *spi_control = ((ev_dev->pEv) + EV_SPI_CONTROL_OFFSET);
int retry_count;
int stat;
#if 0
printk(KERN_INFO "spi_wait_tmt\n");
#endif
for (retry_count = SPI_RETRY_COUNT; retry_count; retry_count--)
if ((stat = be32_to_cpu(*spi_control)) & EV_SPI_CONTROL_TMT)
break;
if (retry_count == 0)
{
printk(KERN_INFO "spi_write TMT not asserted.\n");
return -1;
}
return 0;
}
void spi_slave_select(struct mrf_dev *ev_dev, int select)
{
volatile u32 *spi_control = ((ev_dev->pEv) + EV_SPI_CONTROL_OFFSET);
int stat;
#if 0
printk(KERN_INFO "spi_slave_select %d.\n", select);
#endif
spi_wait_tmt(ev_dev);
if (select)
{
*spi_control = be32_to_cpu(EV_SPI_CONTROL_OE);
stat = be32_to_cpu(*spi_control);
if ((stat & (EV_SPI_CONTROL_OE | EV_SPI_CONTROL_SELECT)) !=
EV_SPI_CONTROL_OE)
printk(KERN_INFO "spi_slave select OE %02x\n", stat);
*spi_control = be32_to_cpu(EV_SPI_CONTROL_OE | EV_SPI_CONTROL_SELECT);
stat = be32_to_cpu(*spi_control);
if ((stat & (EV_SPI_CONTROL_OE | EV_SPI_CONTROL_SELECT)) !=
(EV_SPI_CONTROL_OE | EV_SPI_CONTROL_SELECT))
printk(KERN_INFO "spi_slave select OE & SELECT %02x\n", stat);
}
else
{
*spi_control = be32_to_cpu(EV_SPI_CONTROL_OE);
stat = be32_to_cpu(*spi_control);
if ((stat & (EV_SPI_CONTROL_OE | EV_SPI_CONTROL_SELECT)) !=
EV_SPI_CONTROL_OE)
printk(KERN_INFO "spi_slave select OE %02x\n", stat);
*spi_control = be32_to_cpu(0);
stat = be32_to_cpu(*spi_control);
if ((stat & (EV_SPI_CONTROL_OE | EV_SPI_CONTROL_SELECT)) !=
0)
printk(KERN_INFO "spi_slave select %02x\n", stat);
}
}
int spi_wait_trdy(struct mrf_dev *ev_dev)
{
volatile u32 *spi_control = ((ev_dev->pEv) + EV_SPI_CONTROL_OFFSET);
int retry_count;
int stat;
for (retry_count = SPI_RETRY_COUNT; retry_count; retry_count--)
if ((stat = be32_to_cpu(*spi_control)) & EV_SPI_CONTROL_TRDY)
break;
if (retry_count == 0)
{
printk(KERN_INFO "spi_write TRDY not asserted.\n");
return -1;
}
return 0;
}
int spi_write(struct mrf_dev *ev_dev, int data)
{
volatile u32 *spi_data = ((ev_dev->pEv) + EV_SPI_DATA_OFFSET);
#if 0
printk(KERN_INFO "spi_write %02x.\n", data);
#endif
if (spi_wait_trdy(ev_dev))
return -1;
*spi_data = be32_to_cpu(data);
return (data & 0x00ff);
}
int spi_wait_rrdy(struct mrf_dev *ev_dev)
{
volatile u32 *spi_control = ((ev_dev->pEv) + EV_SPI_CONTROL_OFFSET);
int retry_count;
int stat;
for (retry_count = SPI_RETRY_COUNT; retry_count; retry_count--)
if ((stat = be32_to_cpu(*spi_control)) & EV_SPI_CONTROL_RRDY)
break;
if (retry_count == 0)
{
printk(KERN_INFO "spi_write RRDY not asserted.\n");
return -1;
}
return 0;
}
int spi_read(struct mrf_dev *ev_dev)
{
volatile u32 *spi_data = ((ev_dev->pEv) + EV_SPI_DATA_OFFSET);
int read_data = -1;
if (spi_wait_rrdy(ev_dev))
return -1;
read_data = be32_to_cpu(*spi_data);
#if 0
printk(KERN_INFO "spi_read %02x.\n", read_data);
#endif
return read_data;
}
int flash_readstart(struct mrf_dev *ev_dev)
{
int retval;
spi_slave_select(ev_dev, 0);
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_FAST_READ);
if (retval < 0)
return retval;
/* Three address bytes */
retval = spi_write(ev_dev, 0);
if (retval < 0)
return retval;
retval = spi_write(ev_dev, 0);
if (retval < 0)
return retval;
retval = spi_write(ev_dev, 0);
if (retval < 0)
return retval;
/* One dummy write + the first write that actually reads and starts
the transfer of the first real byte */
retval = spi_write(ev_dev, 0);
if (retval < 0)
return retval;
retval = spi_write(ev_dev, 0);
if (retval < 0)
return retval;
return 0;
}
int flash_readbyte(struct mrf_dev *ev_dev)
{
int retval, read_data;
/* Read byte shifted in by previous write operation */
read_data = spi_read(ev_dev);
if (read_data < 0)
return read_data;
/* Write to start next byte transfer */
retval = spi_write(ev_dev, 0);
if (retval < 0)
return retval;
return read_data;
}
void flash_readend(struct mrf_dev *ev_dev)
{
spi_slave_select(ev_dev, 0);
}
int flash_read_status(struct mrf_dev *ev_dev)
{
int retval;
spi_slave_select(ev_dev, 0);
retval = spi_write(ev_dev, 0);
if (retval < 0)
goto flash_read_status_end;
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_RDSR);
if (retval < 0)
goto flash_read_status_end;
retval = spi_write(ev_dev, 0);
if (retval < 0)
goto flash_read_status_end;
retval = spi_read(ev_dev);
flash_read_status_end:
spi_slave_select(ev_dev, 0);
return retval;
}
int flash_fastread(struct mrf_dev *ev_dev,
char *data, unsigned int addr, unsigned int size)
{
int retval, i;
spi_slave_select(ev_dev, 0);
retval = spi_write(ev_dev, 0);
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_FAST_READ);
if (retval < 0)
goto flash_fastread_out;
/* Three address bytes */
retval = spi_write(ev_dev, (addr >> 16) & 0x00ff);
if (retval < 0)
goto flash_fastread_out;
retval = spi_write(ev_dev, (addr >> 8) & 0x00ff);
if (retval < 0)
goto flash_fastread_out;
retval = spi_write(ev_dev, addr & 0x00ff);
if (retval < 0)
goto flash_fastread_out;
/* One dummy write + the first write that actually reads and starts
the transfer of the first real byte */
retval = spi_write(ev_dev, 0);
if (retval < 0)
goto flash_fastread_out;
retval = spi_write(ev_dev, 0);
if (retval < 0)
goto flash_fastread_out;
for (i = size; i; i--)
{
retval = spi_read(ev_dev);
if (retval < 0)
goto flash_fastread_out;
*(data++) = retval & 0x00ff;
retval = spi_write(ev_dev, 0);
if (retval < 0)
goto flash_fastread_out;
}
flash_fastread_out:
spi_slave_select(ev_dev, 0);
return retval;
}
int flash_bulkerase(struct mrf_dev *ev_dev)
{
int i, retval;
#if 0
printk(KERN_INFO "flash_bulkerase\n");
#endif
/* Dummy write with SS not active */
spi_slave_select(ev_dev, 0);
retval = spi_write(ev_dev, M25P_RDID);
if (retval < 0)
goto flash_bulkerase_end;
#if 0
printk(KERN_INFO "flash_bulkerase 2\n");
#endif
/* Write enable */
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_WREN);
if (retval < 0)
goto flash_bulkerase_end;
spi_slave_select(ev_dev, 0);
#if 0
printk(KERN_INFO "flash_bulkerase 3\n");
#endif
/* Bulk erase */
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_BE);
spi_slave_select(ev_dev, 0);
if (retval < 0)
goto flash_bulkerase_end;
#if 0
printk(KERN_INFO "flash_bulkerase 4\n");
#endif
for (i = 0; i < SPI_BE_COUNT; i++)
{
/* Bulk erasing takes a lot of time so we call schedule() to not
block the system for too long */
schedule();
if ((i % 100000) == 0)
printk(KERN_INFO "flash_bulkerase %d\n", i);
retval = flash_read_status(ev_dev);
if (!(retval & M25P_STATUS_WIP) && retval >= 0)
break;
}
#if 0
printk(KERN_INFO "flash_bulkerase status read %d times\n", i);
#endif
if (i == SPI_BE_COUNT)
retval = -1;
flash_bulkerase_end:
spi_slave_select(ev_dev, 0);
return retval;
/*
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_RDID);
retval = spi_write(ev_dev, 0);
for (i = 0; i < 20; i++)
{
s[i] = spi_read(ev_dev);
retval = spi_write(ev_dev, 0);
}
spi_slave_select(ev_dev, 0);
printk(KERN_INFO "flash read");
for (i = 0; i < 20; i++)
printk(" %02x", s[i]);
printk("\n");
return 0;
*/
}
int flash_primaryerase(struct mrf_dev *ev_dev)
{
int sector, i, retval;
for (sector = FLASH_SECTOR_PRIMARY_START; sector <= FLASH_SECTOR_PRIMARY_END;
sector += FLASH_SECTOR_SIZE)
{
#if 0
printk(KERN_INFO "flash_primary erase\n");
#endif
/* Dummy write with SS not active */
spi_slave_select(ev_dev, 0);
retval = spi_write(ev_dev, M25P_RDID);
if (retval < 0)
goto flash_primary_erase_end;
#if 0
printk(KERN_INFO "flash_primary erase 2\n");
#endif
/* Write enable */
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_WREN);
if (retval < 0)
goto flash_primary_erase_end;
spi_slave_select(ev_dev, 0);
#if 0
printk(KERN_INFO "flash_primary erase 3\n");
#endif
/* Sector erase */
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_SE);
if (retval < 0)
goto flash_primary_erase_end;
/* Three address bytes */
retval = spi_write(ev_dev, (sector >> 16) & 0x00ff);
if (retval < 0)
goto flash_primary_erase_end;
retval = spi_write(ev_dev, (sector >> 8) & 0x00ff);
if (retval < 0)
goto flash_primary_erase_end;
retval = spi_write(ev_dev, sector & 0x00ff);
if (retval < 0)
goto flash_primary_erase_end;
spi_slave_select(ev_dev, 0);
#if 0
printk(KERN_INFO "flash_primary erase 4\n");
#endif
for (i = 0; i < SPI_BE_COUNT; i++)
{
/* Primary erasing takes a lot of time so we call schedule() to not
block the system for too long */
schedule();
if ((i % 100000) == 99999)
printk(KERN_INFO "flash_primary erase sector %d, %d\n", sector, i+1);
retval = flash_read_status(ev_dev);
if (!(retval & M25P_STATUS_WIP) && retval >= 0)
break;
}
printk(KERN_INFO "flash_primary erase status read %d times\n", i);
#if 0
#endif
if (i == SPI_BE_COUNT)
{
retval = -1;
goto flash_primary_erase_end;
}
}
flash_primary_erase_end:
spi_slave_select(ev_dev, 0);
return retval;
/*
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_RDID);
retval = spi_write(ev_dev, 0);
for (i = 0; i < 20; i++)
{
s[i] = spi_read(ev_dev);
retval = spi_write(ev_dev, 0);
}
spi_slave_select(ev_dev, 0);
printk(KERN_INFO "flash read");
for (i = 0; i < 20; i++)
printk(" %02x", s[i]);
printk("\n");
return 0;
*/
}
int flash_pageprogram(struct mrf_dev *ev_dev, char *data,
int addr, int size)
{
int i, retval;
/* Check that page size and address valid */
if (size != FLASH_DATA_ALLOC_SIZE)
return -1;
if ((addr & (FLASH_DATA_ALLOC_SIZE - 1)) != 0)
return -1;
#if 0
printk(KERN_INFO "flash_pp address %06x, size %d\n", addr, size);
#endif
/* Dummy write with SS not active */
spi_slave_select(ev_dev, 0);
retval = spi_write(ev_dev, M25P_RDID);
if (retval < 0)
goto flash_pageprogram_end;
/* Write enable */
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_WREN);
if (retval < 0)
goto flash_pageprogram_end;
spi_slave_select(ev_dev, 0);
/* Page program */
spi_slave_select(ev_dev, 1);
retval = spi_write(ev_dev, M25P_PP);
if (retval < 0)
goto flash_pageprogram_end;
/* Three address bytes */
retval = spi_write(ev_dev, (addr >> 16) & 0x00ff);
if (retval < 0)
goto flash_pageprogram_end;
retval = spi_write(ev_dev, (addr >> 8) & 0x00ff);
if (retval < 0)
goto flash_pageprogram_end;
retval = spi_write(ev_dev, addr & 0x00ff);
if (retval < 0)
goto flash_pageprogram_end;
for (i = 0; i < FLASH_DATA_ALLOC_SIZE; i++)
{
retval = spi_write(ev_dev, data[i]);
if (retval < 0)
goto flash_pageprogram_end;
}
spi_slave_select(ev_dev, 0);
for (i = 0; i < SPI_RETRY_COUNT; i++)
{
retval = flash_read_status(ev_dev);
if (!(retval & M25P_STATUS_WIP))
break;
}
#if 0
printk(KERN_INFO "flash_pp status read %d times\n", i);
#endif
if (i == SPI_RETRY_COUNT)
{
printk(KERN_INFO "flash_pp status read exceeded retry count %d\n", i);
retval = -1;
}
flash_pageprogram_end:
spi_slave_select(ev_dev, 0);
return retval;
}