-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
132 lines (113 loc) · 4.61 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import argparse
from dataset import bAbiImpDataset
from torch import nn, optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
import yaml
import os
import json
from models.enc2dec import EncoderDecoderModel
from models.rndenc2dec import RoundWiseEncoderDecoderModel
from encoders import Encoder
from decoders import Decoder
from utils.checkpointing import CheckpointManager
from utils.metrics import SparseGTMetrics
parser = argparse.ArgumentParser()
parser.add_argument('--dialog-json', default='../data/impl_dial/world_large_nex_4000/impl_dial_test_v0.1.json')
parser.add_argument('--vocab-json', default='train_vocab.json')
parser.add_argument('--overfit', action='store_true')
parser.add_argument('--config-yml', default='./configs/lstm_qa.yml')
parser.add_argument('--batch_size', default=50, type=int)
parser.add_argument('--gpu_id', default=0, type=int)
parser.add_argument('--mode', default='qa', choices=["qa", 'cancel'])
parser.add_argument('--cpu-workers', default=4, type=int)
parser.add_argument('--save-dirpath', default='./output')
parser.add_argument('--ckpt', default='checkpoint_best.pth')
args = parser.parse_args()
# For reproducibility.
# Refer https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
config = yaml.load(open(args.config_yml, 'r'))
val_dataset = bAbiImpDataset(
args.dialog_json,
args.vocab_json,
max_sequence_length=config["model"]["max_seq_len"],
num_examples=args.batch_size if args.overfit else None,
return_explicit=True,
return_options=args.mode == 'cancel',
return_qa=args.mode == 'qa',
concat_history=config.get("concat_history", True),
add_boundary_toks= config["model"].get("decoder") == "gen" # True if generate
)
val_dataloader = DataLoader(
val_dataset,
batch_size=args.batch_size,
num_workers=args.cpu_workers,
)
device = (
torch.device("cuda", args.gpu_id)
if args.gpu_id >= 0
else torch.device("cpu")
)
torch.cuda.set_device(device)
# args.save_dirpath = os.path.join(args.save_dirpath, config["name"], 'eval')
sparse_metrics = SparseGTMetrics()
print(config)
if args.mode == "qa":
model = Encoder(config["model"], val_dataset.vocabulary).to(device)
else:
encoder = Encoder(config["model"], val_dataset.vocabulary)
decoder = Decoder(config["model"], val_dataset.vocabulary)
decoder.word_embed = encoder.word_embed
if config["model"]["model"] == "enc2dec":
model = EncoderDecoderModel(encoder, decoder).to(device)
else:
model = RoundWiseEncoderDecoderModel(encoder, decoder).to(device)
if "inference_encoder" in config["model"]:
new_config = config["model"].copy()
new_config["encoder"] = config["model"]["inference_encoder"]
new_config["decoder"] = config["model"]["inference_decoder"]
inference_encoder = Encoder(new_config, val_dataset.vocabulary)
inference_deocder = Decoder(new_config, val_dataset.vocabulary)
inference_model = EncoderDecoderModel(inference_encoder, inference_deocder)
inference_componet = torch.load(config["model"]["inference_path"])
print('Loaded inference model {}'.format(config["model"]["inference_path"]))
inference_model.load_state_dict(inference_componet["model"])
model.inference_encoder = inference_encoder
load_pthpath = os.path.join(args.save_dirpath, config["name"], args.ckpt)
components = torch.load(load_pthpath)
model.load_state_dict(components['model'])
print('Loaded checkpoint {}'.format(load_pthpath))
model.eval()
if args.mode == "qa":
correct = 0
count = 0
for _, batch in enumerate(tqdm(val_dataloader)):
for key in batch:
batch[key] = batch[key].to(device)
with torch.no_grad():
output = model(batch)
if args.mode == "qa":
pred = output.view(-1, output.size(-1))
pred_idx = pred.max(1)[1]
gt_ans = batch["qa_ans"].view(-1)
correct += torch.sum(pred_idx == gt_ans).item()
count += int(pred.size(0))
else:
for i in range(len(batch["dialog_id"])):
num_rounds = batch["num_rounds"][i]
# if args.mode == "qa":
# else:
sparse_metrics.observe(output[i][:num_rounds].unsqueeze(0), batch["ans_ind"][i][:num_rounds].unsqueeze(0))
all_metrics = {}
if args.mode == "qa":
all_metrics.update({"acc": float(correct)/count*100, "correct": correct, "total": count})
else:
all_metrics.update(sparse_metrics.retrieve(reset=True))
for metric_name, metric_value in all_metrics.items():
print("{}: {}".format(metric_name, metric_value))