forked from cvnlab/cvncode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvnbasicfunctionalinspection.m
360 lines (304 loc) · 12.4 KB
/
cvnbasicfunctionalinspection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
function cvnbasicfunctionalinspection(subjectid,numlayers,layerprefix,fstruncate,ppdir,outputdir)
% function cvnbasicfunctionalinspection(subjectid,numlayers,layerprefix,fstruncate,ppdir,outputdir)
%
% <subjectid> is like 'C0001'
% <numlayers> is like 6
% <layerprefix> is like 'A'
% <fstruncate> is like 'pt'
% <ppdir> is like '/home/stone-ext1/fmridata/20151008-ST001-kk,test/preprocessSURF'
% <outputdir> is like '/home/stone/generic/Dropbox/cvnlab/ppresults/C0041/functionalinspection/session/'
%
% Take the surface-based pre-processed results in <ppdir> and write out a bunch
% of figures to <outputdir>. These figures pertain to raw and bias-corrected
% signal intensities, the 'valid' vertices, the 'dark' (<.5) vertices, and tSNR.
% The figures explore dependence on layers and runs. Also, the results are
% summarized using ROIs taken from Kastner2015Labels.
%
% todo:
% - maybe extend to HCP regions?
%%%%%%%%% setup
% constants
polydeg = 4; % we just use this poly deg when inspecting the bias-correction results
numroi = 24; % there are 24 Kastner ROIs
% make output directory
mkdirquiet(outputdir);
%%%%%%%%% load data
% load in valid mask
V = load(sprintf('%s/valid.mat',ppdir));
% load in homogenized
H = load(sprintf('%s/meanbiascorrected%02d.mat',ppdir,polydeg));
% load in mean intensities
M = load(sprintf('%s/mean.mat',ppdir));
% load in tSNR
tsnrfile = sprintf('%s/tsnr.mat',ppdir);
if exist(tsnrfile,'file') % some sessions don't have this... so we just make a blank figure in these cases...
T = load(tsnrfile);
end
% define
hemis = {'lh' 'rh'};
% which runs to process?
files = matchfiles(sprintf('%s/run??.mat',ppdir));
% init
vals = NaN*zeros(length(files),length(hemis),numroi,numlayers,13); % runs x hemis x roi x layers x quantities
% loop over runs
for pp=1:length(files)
% load data
a1 = load(files{pp});
assert(a1.numlayers==numlayers);
% loop over hemis
for qq=1:length(hemis)
% load ROIs
[roimask,roidescription] = cvnroimask(subjectid,hemis{qq},'Kastner2015Labels',[],sprintf('DENSETRUNC%s',fstruncate));
assert(length(roimask)==numroi);
% figure out offset
if isequal(hemis{qq},'lh')
offset = 0;
else
offset = a1.numlh;
end
% loop over ROIs
for rr=1:length(roimask)
% loop over layers
for ss=1:a1.numlayers
% calc index
ii = offset+find(roimask{rr});
% get out?
if isempty(ii)
fprintf('empty case 1! pp=%d,qq=%d,rr=%d,ss=%d\n',pp,qq,rr,ss);
continue;
end
% get the data
data0 = permute(double(a1.data(:,ss,ii)),[1 3 2]); % TR x vertices
valid0 = permute(double( V.data(1,ss,ii)),[1 3 2]); % 1 x vertices
hom0 = permute(double( H.data(1,ss,ii)),[1 3 2]); % 1 x vertices
mean0 = permute(double( M.data(1,ss,ii)),[1 3 2]); % 1 x vertices
if exist(tsnrfile,'file')
tsnr0 = permute(double( T.data(1,ss,ii)),[1 3 2]); % 1 x vertices
else
tsnr0 = NaN*zeros(1,length(mean0));
end
% calc index
vv = find(valid0); % NOTE: valid0 could be empty! but I think we won't crash
% get the valid part
data0 = data0(:,vv); % TR x vertices
hom0 = hom0(vv); % 1 x vertices
mean0 = mean0(vv); % 1 x vertices
tsnr0 = tsnr0(vv); % 1 x vertices
% save some useful values
temp = mean(data0,2);
vals(pp,qq,rr,ss,1) = mean(temp,1); % for the ROI, mean intensity over time
vals(pp,qq,rr,ss,2) = std(temp); % for the ROI, std over time
vals(pp,qq,rr,ss,[3 4 5]) = prctile(mean0,[25 50 75]); % IQR of the mean intensity across the ROI
vals(pp,qq,rr,ss,6) = sum(hom0<.5)/length(hom0)*100; % percent of the vertices that are dark
vals(pp,qq,rr,ss,7) = sum(valid0)/length(valid0)*100; % percent of the total vertices that are valid
vals(pp,qq,rr,ss,[8 9 10]) = prctile(tsnr0,[25 50 75]); % IQR of the tSNR
vals(pp,qq,rr,ss,[11 12 13]) = prctile(hom0,[25 50 75]);% IQR of the mean bias-corrected intensity across the ROI
% EXPERIMENTAL. REVIVE? IS THIS USEFUL?
%
% % calc
% outputdir = sprintf('%s/run%02d_%s',outputdir,pp,hemis{qq});
%
% % do plots (only first run, first hemisphere)
% if pp==1 && qq==1
%
% % show imagesc plots
% figureprep([100 100 1200 900]);
% subplot(2,1,1); hold on;
% if ~isempty(data0)
% imagesc(zeromean(data0,1)'); % zero-mean each vertex
% axis([.5 size(data0,1)+.5 .5 size(data0,2)+.5]);
% set(gca,'YDir','reverse');
% cax = caxis; mx = max(abs(cax)); caxis([-mx mx]);
% colormap(gray);
% % colorbar;
% end
% xlabel('TR');
% ylabel('Vertices');
% title(sprintf('Run %d, %s (%s), Layer %d, caxis +/- %.1f',pp,roidescription{rr},hemis{qq},ss,mx));
%
% % show mean time-series
% subplot(2,1,2); hold on;
% if ~isempty(data0)
% plot(mean(data0,2)','r-');
% ax = axis;
% axis([.5 size(data0,1)+.5 ax(3:4)]);
% end
% xlabel('TR');
% ylabel('Raw signal');
% figurewrite(sprintf('ts_roi%03d_layer%d',rr,ss),[],[],outputdir);
%
% end
end
end
end
end
%%%%%%%%% calc
roilabels = cellfun(@(x) regexprep(x,'\@.+',''),roidescription,'UniformOutput',0);
%%%%%%%%% histogram of darkness
% histogram of darkness (each vertex has a mean intensity; show only valid vertices)
darkness = double(M.data(logical(V.data)));
mn0 = median(darkness);
figureprep([100 100 500 400]); hold on;
hist(darkness(:),linspace(0,3*mn0,100));
ax = axis; axis([0 3*mn0 ax(3:4)]);
straightline(mn0,'v','r-');
xlabel('Signal intensity (raw)');
ylabel('Frequency');
title(sprintf('All valid vertices, mean intensity (median = %.1f)',mn0));
figurewrite('histdarknessraw',[],[],outputdir);
% histogram of darkness (each vertex has a mean intensity; show only valid vertices)
darkness = double(H.data(logical(V.data)));
mn0 = median(darkness);
figureprep([100 100 500 400]); hold on;
hist(darkness(:),linspace(0,3,100));
ax = axis; axis([0 3 ax(3:4)]);
straightline(mn0,'v','r-');
xlabel('Signal intensity (after bias-correction)');
ylabel('Frequency');
title(sprintf('All valid vertices, bias-corrected mean intensity (median = %.1f)',mn0));
figurewrite('histdarknessbiascorrected',[],[],outputdir);
%%%%%%%%% darkness breakdown by hemi and ROI
% prep
figureprep([100 100 1000 600]);
% just average across runs and layers and show hemis*ROIs
subplot(2,1,1); hold on;
temp = reshape(mean(mean(vals(:,:,:,:,1),1),4),[length(hemis) numroi]); % average across runs and layers; hemi x roi
h = bar(flatten(temp'),1);
ax = axis; axis([0 length(hemis)*numroi+1 ax(3:4)]);
straightline(numroi+.5,'v','c-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('Signal intensity');
title('Signal intensity (averaged across runs and layers)');
xticklabel_rotate;
legend(h,{'0'},'Location','EastOutside');
% show the layer effects (on the median intensity within each ROI)
subplot(2,1,2); hold on;
cmap = jet(numlayers);
temp = permute(mean(vals(:,:,:,:,4),1),[3 2 4 1]); % average across runs; roi x hemi x layers
h = [];
for pp=1:numlayers
h(pp) = plot(squish(temp(:,:,pp),2),'.-','Color',cmap(pp,:));
end
ax = axis; axis([0 length(hemis)*numroi+1 ax(3:4)]);
straightline(numroi+.5,'v','k-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('Signal intensity');
title('Signal intensity as a function of layer (averaged across runs)');
xticklabel_rotate;
legend(h,mat2cellstr(1:6),'Location','EastOutside');
% write
figurewrite('darknessbreakdown',[],[],outputdir);
%%%%%%%%% inspect valid
figureprep([100 100 1500 300]); hold on;
temp = permute(squish(vals(1,:,:,:,7),2),[2 1 3]); % just pull from the first run; roi x hemi x layer
bar(squish(temp,2),1);
ax = axis; axis([0 length(hemis)*numroi+1 0 100]);
straightline(numroi+.5,'v','c-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('Percentage that are valid');
title('Valid vertices as a function of layer');
xticklabel_rotate;
figurewrite('valid',[],[],outputdir);
%%%%%%%%% inspect dark (<.5)
figureprep([100 100 1500 300]); hold on;
temp = permute(squish(vals(1,:,:,:,6),2),[2 1 3]); % just pull from the first run; roi x hemi x layer
bar(squish(temp,2),1);
ax = axis; axis([0 length(hemis)*numroi+1 0 ax(4)]);
straightline(numroi+.5,'v','c-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('Percentage that are dark (<.5)');
title('Dark vertices');
xticklabel_rotate;
figurewrite('dark',[],[],outputdir);
%%%%%%%%% inspect tsnr
figureprep([100 100 1500 300]); hold on;
temp = permute(squish(vals(1,:,:,:,9),2),[2 1 3]); % just pull from the first run; roi x hemi x layer
bar(squish(temp,2),1);
ax = axis; axis([0 length(hemis)*numroi+1 0 ax(4)]);
straightline(numroi+.5,'v','c-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('tSNR (median across ROI)');
title('tSNR as a function of layer');
xticklabel_rotate;
figurewrite('tsnr',[],[],outputdir);
%%%%%%%%% inspect trends over runs (mean intensity)
figureprep([100 100 1500 300]); hold on;
temp = permute(mean(vals(:,:,:,:,1),4),[3 2 1]); % average across layers; roi x hemi x run
bar(squish(temp,2),1);
ax = axis; axis([0 length(hemis)*numroi+1 0 ax(4)]);
straightline(numroi+.5,'v','c-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('Signal intensity');
title('Mean intensity in the ROI (then average across layers) as a function of runs');
xticklabel_rotate;
figurewrite('runtrendmean',[],[],outputdir);
%%%%%%%%% inspect trends over runs (std of the time-series)
figureprep([100 100 1500 300]); hold on;
temp = permute(mean(vals(:,:,:,:,2),4),[3 2 1]); % average across layers; roi x hemi x run
bar(squish(temp,2),1);
ax = axis; axis([0 length(hemis)*numroi+1 0 ax(4)]);
straightline(numroi+.5,'v','c-');
set(gca,'XTick',1:length(hemis)*numroi);
set(gca,'XTickLabel',[roilabels roilabels]);
ylabel('Signal std dev');
title('Std dev of the ROI time-series (then average across layers) as a function of runs');
xticklabel_rotate;
figurewrite('runtrendstd',[],[],outputdir);
%%%%%%%%% scatter plot of mean intensity against tSNR
if exist(tsnrfile,'file')
todo = {{M 'Signal intensity' 'mean'} {H 'Bias-corrected intensity' 'homo'}};
for zz=1:length(todo)
X = todo{zz}{1};
label0 = todo{zz}{2};
file0 = todo{zz}{3};
% set these the same for all layers
xmx = prctile(flatten(double(X.data(logical(V.data)))),99.9); % NOTE: only valid vertices
ymx = prctile(flatten(double(T.data(logical(V.data)))),99.9);
bxx = linspace(0,xmx,50);
byy = linspace(0,ymx,50);
% proceed
for pp=1:numlayers
figureprep([100 100 500 500]); hold on;
vv = logical(V.data(1,pp,:)); % NOTE: only valid vertices
xx = double(vflatten(X.data(1,pp,vv)));
yy = double(vflatten(T.data(1,pp,vv)));
zz = double(vflatten(H.data(1,pp,vv))) < 0.5; % 1 means vein, 0 means not
n1 = hist2d(xx(zz),yy(zz),bxx,byy); % count for the veins
n2 = hist2d(xx(~zz),yy(~zz),bxx,byy); % count for the non-veins
[n,x,y] = hist2d(xx,yy,bxx,byy);
imagesc(x(1,:),y(:,1),log(n));
%scattersparse(xx,yy,3000,0,16,'r');
set(gca,'YDir','normal');
axis([0 xmx 0 ymx]);
caxis([0 log(max(n(:)))]);
colormap(jet(256));
straightline(median(xx),'v','r-');
straightline(median(yy),'h','r-');
xlabel(label0);
ylabel('tSNR');
title('2-D histogram (log of frequency)');
% MAYBE WE DON'T WANT THESE:
% % add some dots
% [ccx,ccy] = meshgrid(bxx,byy);
% basicallyempty = (n1+n2) < 10;
% ccx(basicallyempty) = NaN;
% ccy(basicallyempty) = NaN;
% scatter(ccx(:),ccy(:),16,cmaplookup(vflatten(n1./(n1+n2)),0,1,[],gray(256)),'filled'); % fraction that is vein
% finish up
figurewrite(sprintf('%svstsnr_layer%d',file0,pp),[],[],outputdir);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ACTUALLY, I DON'T THINK WE CARE:
%
% %%%%%%%%% clear and save (in case we want to revisit the results later)
%
% clear data0 darkness roimask a1 V H M T;
% save([outputdir '/record.mat']);