-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentailment.py
150 lines (143 loc) · 5.88 KB
/
entailment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import cPickle as pickle
import numpy as np
import os
import time
import warnings
from dmatrices import DMatrices, ZERO_THRESH
def process_data(path, matrices_path, num_processes, output_path, dimension, mode, skew):
with open(path, 'r') as f:
data = pickle.load(f)
pairs = [(point[0], point[1]) for point in data]
# Instantiate DMatrices
dm = DMatrices(matrices_path, n=dimension, mode=mode)
fid = dm.fidelity(pairs, num_processes=num_processes)
print "Fidelity : %0.3f" % get_avg_precision(data, fid)
weeds = dm.weeds_prec(pairs, num_processes=num_processes)
print "AP WeedsPrec: %0.3f" % get_avg_precision(data, weeds)
clarke_de = dm.clarke_de(pairs, num_processes=num_processes)
print "AP ClarkeDE: %0.3f" % get_avg_precision(data, clarke_de)
inv_cl = dm.inv_cl(pairs, num_processes=num_processes)
print "AP InvCL: %0.3f" % get_avg_precision(data, inv_cl)
t = time.time()
if skew:
results = dm.skew_repres(pairs, num_processes=num_processes)
else:
results = dm.repres(pairs, num_processes=num_processes)
print "Representativeness computed in %d seconds" % (time.time() - t)
evaluate(data, results)
if output_path:
with open(output_path, 'w') as f:
for i, pair in enumerate(pairs):
if results[i]:
output_str = "%s %s %0.6f %0.6f" % (pair + results[i])
else:
output_str = "%s %s" % (pair)
f.write(output_str + "\n")
vectors_path = os.path.join(matrices_path, "vectors.txt")
if os.path.exists(vectors_path):
vector_results = process_vectors(pairs, vectors_path, dimension)
evaluate(data, vector_results)
def process_vectors(pairs, vectors_path, dimension):
vectors = {}
with open(vectors_path, 'r') as f:
for line in f:
data = line.rstrip('\n').split(' ')
if dimension == None:
vec = np.array([float(x) for x in data[1:]])
else:
vec = np.array([float(data[i]) for i in xrange(1, dimension + 1)])
if np.linalg.norm(vec) >= ZERO_THRESH:
vectors[data[0]] = vec
results = []
for pair in pairs:
if not (pair[0] in vectors and pair[1] in vectors):
results.append(None)
continue
vecx = vectors[pair[0]]
vecy = vectors[pair[1]]
x_entails_y = 1
y_entails_x = 1
for (xval, yval) in zip(vecx,vecy):
if xval < ZERO_THRESH and yval >= ZERO_THRESH:
y_entails_x = 0
if yval < ZERO_THRESH and xval >= ZERO_THRESH:
x_entails_y = 0
results.append((x_entails_y, y_entails_x))
return results
def evaluate(ground_truth, results):
# Evaluated by partial correctness.
true_pos = 0
false_pos = 0
true_neg = 0
false_neg = 0
# Strictly correct.
correct = 0
# Total data points where matrices exist.
total = 0
# Counts for each data type.
pos = 0
neg = 0
nonzero = 0
for i, (con, relu, cla, rel) in enumerate(ground_truth):
if results[i] == None:
continue
total += 1
r_ab, r_ba = results[i]
if r_ab >= ZERO_THRESH or r_ba >= ZERO_THRESH:
nonzero += 1
if rel == "hyper":
pos += 1
if r_ab > r_ba and r_ab >= ZERO_THRESH:
true_pos += 1
if r_ba < ZERO_THRESH:
correct += 1
elif r_ab <= r_ba:
false_neg += 1
elif rel == "random-n":
neg += 1
if r_ab > r_ba and r_ab >= ZERO_THRESH:
false_pos += 1
elif r_ab <= r_ba:
true_neg += 1
print "Total pairs with complete data: %d out of %d" % (total, len(ground_truth))
print "Total pairs with nonzero data: %d out of %d" % (nonzero, len(ground_truth))
print "Completely correct %d out of %d, %0.1f%%" % (correct, pos, 100 * correct / float(pos))
print "TP: %d FP: %d TN: %d FN: %d" % (true_pos, false_pos, true_neg, false_neg)
print "...out of POS: %d NEG: %d" % (pos, neg)
def get_avg_precision(ground_truth, results):
concept_result_map = {}
for i, (con, relu, cla, rel) in enumerate(ground_truth):
if con in concept_result_map:
concept_result_map[con].append((results[i], rel))
else:
concept_result_map[con] = [(results[i], rel)]
final = 0.0
total_concepts = 0
for concept in concept_result_map:
val_label_pairs = concept_result_map[concept]
val_label_pairs = sorted(val_label_pairs, reverse=True)
positive = 0
total = 0.0
for k, (val, label) in enumerate(val_label_pairs):
if label == "hyper":
positive += 1
total += positive / float(k+1)
elif val == None:
break
if positive > 0:
total_concepts += 1
final += total / positive
return final / total_concepts
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate on entailment data set.")
parser.add_argument('path', type=str, help='path to entailment data')
parser.add_argument('matrices', type=str, help='path to matrices')
parser.add_argument('--num_processes', type=int, help='number of processes to use', default=1)
parser.add_argument('--output', type=str, help='path to results output path')
parser.add_argument('--dimension', type=int, help='intended dimension of matrices, sparse matrices only')
parser.add_argument('--mode', type=str, help='cutoff mode, requires sparse matrices')
parser.add_argument('--skew', action='store_true', help='use skew divergence')
args = parser.parse_args()
warnings.filterwarnings("once")
process_data(args.path, args.matrices, args.num_processes, args.output, args.dimension, args.mode, args.skew)