-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathtest.py
138 lines (114 loc) · 5.27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import cv2
import numpy as np
import os
import torch
import pdb
from utils import setup_seed, read_points, read_calib, read_label, \
keep_bbox_from_image_range, keep_bbox_from_lidar_range, vis_pc, \
vis_img_3d, bbox3d2corners_camera, points_camera2image, \
bbox_camera2lidar
from model import PointPillars
def point_range_filter(pts, point_range=[0, -39.68, -3, 69.12, 39.68, 1]):
'''
data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
point_range: [x1, y1, z1, x2, y2, z2]
'''
flag_x_low = pts[:, 0] > point_range[0]
flag_y_low = pts[:, 1] > point_range[1]
flag_z_low = pts[:, 2] > point_range[2]
flag_x_high = pts[:, 0] < point_range[3]
flag_y_high = pts[:, 1] < point_range[4]
flag_z_high = pts[:, 2] < point_range[5]
keep_mask = flag_x_low & flag_y_low & flag_z_low & flag_x_high & flag_y_high & flag_z_high
pts = pts[keep_mask]
return pts
def main(args):
CLASSES = {
'Pedestrian': 0,
'Cyclist': 1,
'Car': 2
}
LABEL2CLASSES = {v:k for k, v in CLASSES.items()}
pcd_limit_range = np.array([0, -40, -3, 70.4, 40, 0.0], dtype=np.float32)
if not args.no_cuda:
model = PointPillars(nclasses=len(CLASSES)).cuda()
model.load_state_dict(torch.load(args.ckpt))
else:
model = PointPillars(nclasses=len(CLASSES))
model.load_state_dict(
torch.load(args.ckpt, map_location=torch.device('cpu')))
if not os.path.exists(args.pc_path):
raise FileNotFoundError
pc = read_points(args.pc_path)
pc = point_range_filter(pc)
pc_torch = torch.from_numpy(pc)
if os.path.exists(args.calib_path):
calib_info = read_calib(args.calib_path)
else:
calib_info = None
if os.path.exists(args.gt_path):
gt_label = read_label(args.gt_path)
else:
gt_label = None
if os.path.exists(args.img_path):
img = cv2.imread(args.img_path, 1)
else:
img = None
model.eval()
with torch.no_grad():
if not args.no_cuda:
pc_torch = pc_torch.cuda()
result_filter = model(batched_pts=[pc_torch],
mode='test')[0]
if calib_info is not None and img is not None:
tr_velo_to_cam = calib_info['Tr_velo_to_cam'].astype(np.float32)
r0_rect = calib_info['R0_rect'].astype(np.float32)
P2 = calib_info['P2'].astype(np.float32)
image_shape = img.shape[:2]
result_filter = keep_bbox_from_image_range(result_filter, tr_velo_to_cam, r0_rect, P2, image_shape)
result_filter = keep_bbox_from_lidar_range(result_filter, pcd_limit_range)
lidar_bboxes = result_filter['lidar_bboxes']
labels, scores = result_filter['labels'], result_filter['scores']
vis_pc(pc, bboxes=lidar_bboxes, labels=labels)
if calib_info is not None and img is not None:
bboxes2d, camera_bboxes = result_filter['bboxes2d'], result_filter['camera_bboxes']
bboxes_corners = bbox3d2corners_camera(camera_bboxes)
image_points = points_camera2image(bboxes_corners, P2)
img = vis_img_3d(img, image_points, labels, rt=True)
if calib_info is not None and gt_label is not None:
tr_velo_to_cam = calib_info['Tr_velo_to_cam'].astype(np.float32)
r0_rect = calib_info['R0_rect'].astype(np.float32)
dimensions = gt_label['dimensions']
location = gt_label['location']
rotation_y = gt_label['rotation_y']
gt_labels = np.array([CLASSES.get(item, -1) for item in gt_label['name']])
sel = gt_labels != -1
gt_labels = gt_labels[sel]
bboxes_camera = np.concatenate([location, dimensions, rotation_y[:, None]], axis=-1)
gt_lidar_bboxes = bbox_camera2lidar(bboxes_camera, tr_velo_to_cam, r0_rect)
bboxes_camera = bboxes_camera[sel]
gt_lidar_bboxes = gt_lidar_bboxes[sel]
gt_labels = [-1] * len(gt_label['name']) # to distinguish between the ground truth and the predictions
pred_gt_lidar_bboxes = np.concatenate([lidar_bboxes, gt_lidar_bboxes], axis=0)
pred_gt_labels = np.concatenate([labels, gt_labels])
vis_pc(pc, pred_gt_lidar_bboxes, labels=pred_gt_labels)
if img is not None:
bboxes_corners = bbox3d2corners_camera(bboxes_camera)
image_points = points_camera2image(bboxes_corners, P2)
gt_labels = [-1] * len(gt_label['name'])
img = vis_img_3d(img, image_points, gt_labels, rt=True)
if calib_info is not None and img is not None:
cv2.imshow(f'{os.path.basename(args.img_path)}-3d bbox', img)
cv2.waitKey(0)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Configuration Parameters')
parser.add_argument('--ckpt', default='pretrained/epoch_160.pth', help='your checkpoint for kitti')
parser.add_argument('--pc_path', help='your point cloud path')
parser.add_argument('--calib_path', default='', help='your calib file path')
parser.add_argument('--gt_path', default='', help='your ground truth path')
parser.add_argument('--img_path', default='', help='your image path')
parser.add_argument('--no_cuda', action='store_true',
help='whether to use cuda')
args = parser.parse_args()
main(args)