-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathPyrexOutput.py
220 lines (205 loc) · 10.6 KB
/
PyrexOutput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
###############################
@author: zhenwei.shi, Maastro##
###############################
"""
from rdflib import Graph, Literal
from rdflib.namespace import Namespace,URIRef,RDF,RDFS
import urllib
import os
import csv
from datetime import datetime
import pandas as pd
# Function to store readiomics in different types of formats, such as csv and RDF.
def RadiomicsRDF(featureVector,exportDir,patientID,myStructUID,ROI,export_format,export_name):
graph = Graph() # Create a rdflib graph object
# feature_name = [] # Create a list for features
# feature_uri = [] # Create a list for feature uri (ontology)
# Namespaces used in O-RAW
ro = Namespace('http://www.radiomics.org/RO/')
roo = Namespace('http://www.cancerdata.org/roo/')
IAO = Namespace('http://purl.obolibary.org/obo/IAO_')
SWO = Namespace('http://www.ebi.ac.uk/swo/SWO_')
NCIT = Namespace('http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#')
# Adding namespace to graph space
graph.bind('ro',ro)
graph.bind('roo',roo)
graph.bind('IAO',IAO)
graph.bind('SWO',SWO)
graph.bind('NCIT',NCIT)
# ------------------------- URI of related entities -----------------
# ^^^^^^^^^^^^^^^^^^^^^^^^^ Level-1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
patient_uri = URIRef(NCIT+'C16960')
has_pacs_study = URIRef(roo + '100284') # patient has_pacs_study scan
scan_uri = URIRef(NCIT+'C17999')
converted_to = URIRef(ro + '0310') # scan converted_to image_volume
image_volume_uri = URIRef(ro + '0271')
is_part_of = URIRef(ro + '0298') # image_volume is_part_of image_space
image_space_uri = URIRef(ro + '0225')
# ROImask_uri = URIRef(roo + '0272') # ROImask is_part_of image_space
is_label_of = URIRef(ro + 'P00190') # GTV/... is_label_of ROImask
has_label = URIRef(ro+'P00051')
# GTV_uri = URIRef(roo + '100006')
used_to_compute = URIRef(ro + '0296') # image_space used_to_compute RadiomicsFeature
# ^^^^^^^^^^^^^^^^^^^^^^^^^ Level-2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
mm_uri = URIRef(ro + 'I0020')
mm2_uri = URIRef(ro + 'I0027')
mm3_uri = URIRef(ro + 'I0011')
has_value = URIRef(ro + '010191') # RadiomicsFeature has_value
has_unit = URIRef(ro + '010198') # RadiomicsFeature has_unit
# ^^^^^^^^^^^^^^^^^^^^^^^^^ Level-3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
computed_using = URIRef(ro + 'P00002') # RadiomicsFeature computed_using calculationrun_space
calculationrun_space_uri = URIRef(ro + '0297')
# run_on = URIRef(ro + '00000002') # calclulationrun run_on datetime
at_date_time = URIRef(roo + '100041')
performed_by = URIRef(ro + '0283') # calculationrun_space performed_by softwareproperties_uri
softwareproperties_uri = URIRef(ro + '010215') # software has_label literal(SoftwareProperties)
has_programming_language = URIRef(ro + '0010195') # software has_programming_language programminglanguage
# programminglanguage_uri = URIRef(IAO + '0000025')
# python_uri = URIRef(SWO + '000018')
has_version = URIRef(ro + '0010192') # software has_version
# version_uri = URIRef(ro + '010166')
# ^^^^^^^^^^^^^^^^^^^^^^^^^ Level-4 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
featureparameterspace_uri = URIRef(ro + '001000')
defined_by = URIRef(ro + 'P000009') # featureparameterspace defined_by settings
# filterproperties_uri = URIRef(roo + '0255') # has_value wavelet right/not?
# aggregationparameters = URIRef(roo + '0218')
# discretizationparameters = URIRef(roo + '0214')
# featureSpecificparameters = URIRef(roo + '0215')
# interpolationparameters = URIRef(roo + '0217')
# reSegmentationparameters = URIRef(roo + '0216')
# -------------- localhost URIs ---------------------------
localhost_patient = 'http://localhost/data/patient_'
localhost_scan = 'http://localhost/data/scan_'
localhost_imagevolume = 'http://localhost/data/imagevolume_'
localhost_imagespace = 'http://localhost/data/imagespace_'
localhost_ROI = 'http://localhost/data/ROI_'
localhost_feature = 'http://localhost/data/feature_'
localhost_featureparameter = 'http://localhost/data/localhost_featureparameter_'
#-----------------------
localhost_mm = 'http://localhost/data/mm'
localhost_mm2 = 'http://localhost/data/mm2'
localhost_mm3 = 'http://localhost/data/mm3'
#------------------------RDF entities---------------------------------
RDF_patid = URIRef(localhost_patient+patientID)
RDF_scan = URIRef(localhost_scan + myStructUID)
RDF_imagevolume = URIRef(localhost_imagevolume + myStructUID + '_' + urllib.quote(ROI))
RDF_imagespace = URIRef(localhost_imagespace + myStructUID + '_' + urllib.quote(ROI))
RDF_featureparameter = URIRef(localhost_featureparameter + myStructUID + '_' + urllib.quote(ROI))
RDF_ROI = URIRef(localhost_ROI+ '_' + urllib.quote(ROI))
RDF_mm = URIRef(localhost_mm)
RDF_mm2 = URIRef(localhost_mm2)
RDF_mm3 = URIRef(localhost_mm3)
# --------------------
RDF_python = Literal('Python')
RDF_softwareversion = Literal('PyRadiomics_' + featureVector['diagnostics_Versions_PyRadiomics']) # version of pyradiomics
RDF_ROItype = Literal(ROI) # ROI
RDF_Datetime = Literal(datetime.now().strftime("%Y-%m-%d")) # run at_date_time
# -------------------- feature parameters -----------------
RDF_featureparameter = Literal(featureVector['diagnostics_Configuration_Settings'])
# For further use, split diagnostics_Configuration_Settings, but not now
# RDF_resampledPixelSpacing = Literal(featureVector['diagnostics_Configuration_Settings']['resampledPixelSpacing'])
# RDF_interpolator = Literal(featureVector['diagnostics_Configuration_Settings']['interpolator'])
# RDF_resegmentRange = Literal(featureVector['diagnostics_Configuration_Settings']['resegmentRange'])
#----------------------------------------------------------------
# Load Radiomics Ontology table
df_RO = pd.read_csv(os.path.join(os.getcwd(),'RadiomicsOntology','ORAW_RO_Table.csv'))
#extract feature keys and values from featureVector cumputed by pyradiomcis
f_key = list(featureVector.keys())
f_value = list(featureVector.values())
# # remove columns with general info from pyradiomics results
f_index = []
for i in range(len(f_key)):
if 'diagnostics' not in f_key[i]: # filter out 'general_info' from featureVector
f_index.append(i)
radiomics_key = []
radiomics_value = []
for j in f_index:
radiomics_key.append(f_key[j])
radiomics_value.append(f_value[j])
# # Adding elements to graph
for i in range(len(radiomics_key)-3): # -3 means filter out patientid, RTid, and countour
# # ---------------------- do text match ------------
if 'log' in radiomics_key[i]:
radiomics_feature = radiomics_key[i][20:]
radiomics_imagetype = radiomics_key[i][0:19]
radiomics_binwidth = featureVector['diagnostics_Configuration_EnabledImageTypes']['LoG']['binWidth']
elif 'wavelet' in radiomics_key[i]:
radiomics_feature = radiomics_key[i][12:]
radiomics_imagetype = radiomics_key[i][0:11]
radiomics_binwidth = featureVector['diagnostics_Configuration_EnabledImageTypes']['Wavelet']['binWidth']
else:
radiomics_feature = radiomics_key[i][9:]
radiomics_imagetype = radiomics_key[i][0:8]
radiomics_binwidth = featureVector['diagnostics_Configuration_EnabledImageTypes']['Original']['binWidth']
## --------------------------------------------------
ind = pd.Index(df_RO.iloc[:,0]).get_loc(radiomics_feature)
tmp_uri = URIRef(df_RO.iloc[:,1][ind])
tmp_value = Literal(radiomics_value[i])
#---------------------------------RDF entity for feature
RDF_feature = URIRef(localhost_feature + myStructUID + '_' + urllib.quote(ROI) + '_' + radiomics_key[i])
RDF_imagetype = Literal(radiomics_imagetype)
RDF_binwidth = Literal('binwidth: ' + str(radiomics_binwidth))
RDF_featureparameterspace = URIRef(featureparameterspace_uri + '_' + radiomics_key[i])
# ----------------------------------------------------
# start adding
# ------------ patient layer ---------------
graph.add((RDF_patid,RDF.type,patient_uri))
graph.add((RDF_patid,has_pacs_study,RDF_scan))
# ------------ scan layer ---------------
graph.add((RDF_scan,RDF.type,scan_uri))
graph.add((RDF_scan,converted_to,RDF_imagevolume))
# ------------ image volume layer ---------------
graph.add((RDF_imagevolume,RDF.type,image_volume_uri))
graph.add((RDF_imagevolume,is_part_of,RDF_imagespace))
# ------------ image space layer ---------------
graph.add((RDF_imagespace,RDF.type,image_space_uri))
graph.add((RDF_imagespace,used_to_compute,RDF_feature))
graph.add((RDF_ROI,is_part_of,RDF_imagespace))
# graph.add((RDF_ROItype,is_label_of,RDF_ROI))
graph.add((RDF_ROI,has_label,RDF_ROItype))
# ------------ feature layer ---------------
graph.add((RDF_feature,RDF.type,tmp_uri))
graph.add((RDF_feature,has_value,tmp_value))
# ------------ calculatin run layer ------------
graph.add((RDF_feature,computed_using,calculationrun_space_uri))
graph.add((calculationrun_space_uri,performed_by,softwareproperties_uri))
### missing ontology of at_date_time -------------
graph.add((calculationrun_space_uri,at_date_time,RDF_Datetime))
# graph.add((datetime_uri,has_value,Literal(str(datetime.now()))))
graph.add((softwareproperties_uri,has_programming_language,RDF_python))
graph.add((softwareproperties_uri,has_version,RDF_softwareversion))
# ------------feature parameter layer----------
graph.add((RDF_feature,computed_using,RDF_featureparameterspace))
graph.add((RDF_featureparameterspace,defined_by,RDF_featureparameter))
graph.add((RDF_featureparameterspace,defined_by,RDF_imagetype))
graph.add((RDF_featureparameterspace,defined_by,RDF_binwidth))
# ----------- add unit to feature, if it has ------------------
if radiomics_key[i] == 'original_shape_Volume':
graph.add((RDF_feature,has_unit,RDF_mm3))
graph.add((RDF_mm3,RDF.type,mm3_uri))
if radiomics_key[i] == 'original_shape_SurfaceArea':
graph.add((RDF_feature,has_unit,RDF_mm2))
graph.add((RDF_mm2,RDF.type,mm2_uri))
if radiomics_key[i] == 'original_shape_LeastAxis':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
if radiomics_key[i] == 'original_shape_MajorAxis':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
if radiomics_key[i] == 'original_shape_Maximum2DDiameterColumn':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
if radiomics_key[i] == 'original_shape_Maximum2DDiameterRow':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
if radiomics_key[i] == 'original_shape_Maximum2DDiameterSlice':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
if radiomics_key[i] == 'original_shape_Maximum3DDiameter':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
if radiomics_key[i] == 'original_shape_MinorAxis':
graph.add((RDF_feature,has_unit,RDF_mm))
graph.add((RDF_mm,RDF.type,mm_uri))
return graph