-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtimm_test.py
282 lines (250 loc) · 11.7 KB
/
timm_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python
""" ImageNet Validation Script
This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained
models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes
canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit.
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import os
import csv
import glob
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
from collections import OrderedDict
from models.my_searched_model import my_specialized
try:
from apex import amp
has_apex = True
except ImportError:
has_apex = False
from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models,\
set_scriptable, set_no_jit
from timm.data import Dataset, DatasetTar, create_loader, resolve_data_config
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--model', '-m', metavar='MODEL', default='dpn92',
help='model architecture (default: dpn92)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop pct')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=1000,
help='Number classes in dataset')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")')
parser.add_argument('--log-freq', default=1, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', type=str,
default=False, help='load pretrained module')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
help='disable test time pool')
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--amp', action='store_true', default=False,
help='Use AMP mixed precision')
parser.add_argument('--tf-preprocessing', action='store_true', default=False,
help='Use Tensorflow preprocessing pipeline (require CPU TF installed')
parser.add_argument('--use-ema', dest='use_ema', action='store_true',
help='use ema version of weights if present')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
def validate(args):
# might as well try to validate something
args.pretrained = args.pretrained or not args.checkpoint
args.prefetcher = not args.no_prefetcher
# create model
model = my_specialized(num_classes=args.num_classes, net_config=args.model,
dropout_rate=0)
ckpt = torch.load(args.pretrained)
# for k in model:
# print(k)
# return
# set bn
# model.set_bn_param(config.bn_momentum, config.bn_eps)
for _key in list(ckpt['state_dict_ema'].keys()):
if 'total_ops' in _key or 'total_params' in _key:
del ckpt['state_dict_ema'][_key]
model.load_state_dict(ckpt['state_dict_ema'])
# model = create_model(
# args.model,
# pretrained=args.pretrained,
# num_classes=args.num_classes,
# in_chans=3,
# scriptable=args.torchscript)
param_count = sum([m.numel() for m in model.parameters()])
print('Model %s created, param count: %d' %
(args.model, param_count))
data_config = resolve_data_config(vars(args), model=model)
model, test_time_pool = apply_test_time_pool(model, data_config, args)
if args.torchscript:
torch.jit.optimized_execution(True)
model = torch.jit.script(model)
if args.amp:
model = amp.initialize(model.cuda(), opt_level='O1')
else:
model = model.cuda()
if args.num_gpu > 1:
model = torch.nn.DataParallel(
model, device_ids=list(range(args.num_gpu)))
criterion = nn.CrossEntropyLoss().cuda()
# from torchvision.datasets import ImageNet
# dataset = ImageNet(args.data, split='val')
if os.path.splitext(args.data)[1] == '.tar' and os.path.isfile(args.data):
dataset = DatasetTar(
args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
else:
dataset = Dataset(
args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
crop_pct = 1.0 if test_time_pool else data_config['crop_pct']
loader = create_loader(
dataset,
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=args.prefetcher,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=crop_pct,
pin_memory=args.pin_mem,
tf_preprocessing=args.tf_preprocessing)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
# warmup, reduce variability of first batch time, especially for comparing torchscript vs non
input = torch.randn((args.batch_size,) + data_config['input_size']).cuda()
model(input)
end = time.time()
for i, (input, target) in enumerate(loader):
if args.no_prefetcher:
target = target.cuda()
input = input.cuda()
if args.fp16:
input = input.half()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.log_freq == 0:
print(
'Test: [{0:>4d}/{1}] '
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) '
'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(
i, len(loader), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5))
results = OrderedDict(
top1=round(top1.avg, 4), top1_err=round(100 - top1.avg, 4),
top5=round(top5.avg, 4), top5_err=round(100 - top5.avg, 4),
param_count=round(param_count / 1e6, 2),
img_size=data_config['input_size'][-1],
cropt_pct=crop_pct,
interpolation=data_config['interpolation'])
print(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format(
results['top1'], results['top1_err'], results['top5'], results['top5_err']))
return results
def main():
setup_default_logging()
args = parser.parse_args()
validate(args)
# if os.path.isdir(args.checkpoint):
# # validate all checkpoints in a path with same model
# checkpoints = glob.glob(args.checkpoint + '/*.pth.tar')
# checkpoints += glob.glob(args.checkpoint + '/*.pth')
# model_names = list_models(args.model)
# model_cfgs = [(args.model, c)
# for c in sorted(checkpoints, key=natural_key)]
# else:
# if args.model == 'all':
# # validate all models in a list of names with pretrained checkpoints
# args.pretrained = True
# model_names = list_models(pretrained=True)
# model_cfgs = [(n, '') for n in model_names]
# elif not is_model(args.model):
# # model name doesn't exist, try as wildcard filter
# model_names = list_models(args.model)
# model_cfgs = [(n, '') for n in model_names]
# if len(model_cfgs):
# results_file = args.results_file or './results-all.csv'
# logging.info('Running bulk validation on these pretrained models: {}'.format(
# ', '.join(model_names)))
# results = []
# try:
# start_batch_size = args.batch_size
# for m, c in model_cfgs:
# batch_size = start_batch_size
# args.model = m
# args.checkpoint = c
# result = OrderedDict(model=args.model)
# r = {}
# while not r and batch_size >= args.num_gpu:
# try:
# args.batch_size = batch_size
# print('Validating with batch size: %d' %
# args.batch_size)
# r = validate(args)
# except RuntimeError as e:
# if batch_size <= args.num_gpu:
# print(
# "Validation failed with no ability to reduce batch size. Exiting.")
# raise e
# batch_size = max(batch_size // 2, args.num_gpu)
# print("Validation failed, reducing batch size by 50%")
# torch.cuda.empty_cache()
# result.update(r)
# if args.checkpoint:
# result['checkpoint'] = args.checkpoint
# results.append(result)
# except KeyboardInterrupt:
# pass
# results = sorted(results, key=lambda x: x['top1'], reverse=True)
# if len(results):
# write_results(results_file, results)
# else:
# validate(args)
def write_results(results_file, results):
with open(results_file, mode='w') as cf:
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()