-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathtrain.py
394 lines (298 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import sys
from sklearn import preprocessing, model_selection
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.externals import joblib
import argparse
from argparse import RawTextHelpFormatter, RawDescriptionHelpFormatter
import os
from scipy import stats
def rmse(y_true, y_pred):
dev = np.square(y_true.ravel() - y_pred.ravel())
return np.sqrt(np.sum(dev) / y_true.shape[0])
def pcc(y_true, y_pred):
p = stats.pearsonr(y_true, y_pred)
return p[0]
def pcc_rmse(y_true, y_pred):
global alpha
dev = np.square(y_true.ravel() - y_pred.ravel())
r = np.sqrt(np.sum(dev) / y_true.shape[0])
p = stats.pearsonr(y_true, y_pred)[0]
return (1-p)*alpha + r * (1 - alpha)
def PCC_RMSE(y_true, y_pred):
global alpha
fsp = y_pred - tf.keras.backend.mean(y_pred)
fst = y_true - tf.keras.backend.mean(y_true)
devP = tf.keras.backend.std(y_pred)
devT = tf.keras.backend.std(y_true)
r = tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.square(y_pred - y_true), axis=-1))
p = 1.0 - tf.keras.backend.mean(fsp * fst) / (devP * devT)
#p = tf.where(tf.is_nan(p), 0.25, p)
return alpha * p + (1 - alpha) * r
def RMSE(y_true, y_pred):
return tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.square(y_pred - y_true), axis=-1))
def PCC(y_true, y_pred):
fsp = y_pred - tf.keras.backend.mean(y_pred)
fst = y_true - tf.keras.backend.mean(y_true)
devP = tf.keras.backend.std(y_pred)
devT = tf.keras.backend.std(y_true)
return tf.keras.backend.mean(fsp * fst) / (devP * devT)
def remove_shell_features(dat, shell_index, features_n=64):
df = dat.copy()
start = shell_index * features_n
end = start + features_n
zeroes = np.zeros((df.shape[0], features_n))
df[:, start:end] = zeroes
return df
def remove_atomtype_features(dat, feature_index, shells_n=60):
df = dat.copy()
for i in range(shells_n):
ndx = i * 64 + feature_index
zeroes = np.zeros(df.shape[0])
df[:, ndx] = zeroes
return df
def remove_all_hydrogens(dat, n_features):
df = dat.copy()
for f in df.columns.values[:n_features]:
if "H_" in f or "_H_" in f:
v = np.zeros(df.shape[0])
df[f] = v
return df
def create_model(input_size, lr=0.0001, maxpool=True, dropout=0.1):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=4, strides=1,
padding="valid", input_shape=input_size))
model.add(tf.keras.layers.Activation("relu"))
if maxpool:
model.add(tf.keras.layers.MaxPooling2D(
pool_size=2,
strides=2,
padding='same', # Padding method
))
model.add(tf.keras.layers.Conv2D(64, 4, 1, padding="valid"))
model.add(tf.keras.layers.Activation("relu"))
if maxpool:
model.add(tf.keras.layers.MaxPooling2D(
pool_size=2,
strides=2,
padding='same', # Padding method
))
model.add(tf.keras.layers.Conv2D(128, 4, 1, padding="valid"))
model.add(tf.keras.layers.Activation("relu"))
if maxpool:
model.add(tf.keras.layers.MaxPooling2D(
pool_size=2,
strides=2,
padding='same', # Padding method
))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(400, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(dropout))
model.add(tf.keras.layers.Dense(200,
kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(dropout))
model.add(tf.keras.layers.Dense(100, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dropout(dropout))
#model.add(tf.keras.layers.Dense(20, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
#model.add(tf.keras.layers.Activation("relu"))
#model.add(tf.keras.layers.BatchNormalization())
#model.add(tf.keras.layers.Dropout(dropout))
model.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
sgd = tf.keras.optimizers.SGD(lr=lr, momentum=0.9, decay=1e-6, )
model.compile(optimizer=sgd, loss=PCC_RMSE, metrics=['mse'])
return model
if __name__ == "__main__":
d = """Train or predict the features based on protein-ligand complexes.
Examples:
python CNN_model_keras.py -fn1 docked_training_features_12ksamples_rmsd_lessthan3a.csv
-fn2 training_pka_features.csv -history hist.csv -pKa_col pKa_mimic pKa -train 1
"""
parser = argparse.ArgumentParser(description=d, formatter_class=RawDescriptionHelpFormatter)
parser.add_argument("-fn_train", type=str, default=["features_1.csv", ], nargs="+",
help="Input. The docked cplx feature training set.")
parser.add_argument("-fn_validate", type=str, default=["features_2.csv", ], nargs="+",
help="Input. The PDBBind feature validating set.")
parser.add_argument("-fn_test", type=str, default=["features_2.csv", ], nargs="+",
help="Input. The PDBBind feature testing set.")
parser.add_argument("-y_col", type=str, nargs="+", default=["pKa_relu", "pKa_true"],
help="Input. The pKa colname as the target. ")
parser.add_argument("-scaler", type=str, default="StandardScaler.model",
help="Output. The standard scaler file to save. ")
parser.add_argument("-prev_scaler", type=str, default="model/prev_scaler.lib",
help="Load previously trained scaler.")
parser.add_argument("-model", type=str, default="DNN_Model.h5",
help="Output. The trained DNN model file to save. ")
parser.add_argument("-prev_model", type=str, default="model/prev_trained_model.h5",
help="Load previously trained model to fine tune the model.")
parser.add_argument("-log", type=str, default="",
help="Output. The logger file name to save. ")
parser.add_argument("-out", type=str, default="predicted_pKa.csv",
help="Output. The predicted pKa values file name to save. ")
parser.add_argument("-lr_init", type=float, default=0.001,
help="Input. Default is 0.001. The initial learning rate. ")
parser.add_argument("-epochs", type=int, default=100,
help="Input. Default is 100. The number of epochs to train. ")
parser.add_argument("-batch", type=int, default=128,
help="Input. Default is 128. The batch size. ")
parser.add_argument("-patience", type=int, default=40,
help="Input. Default is 40. The patience steps. ")
parser.add_argument("-delta_loss", type=float, default=0.01,
help="Input. Default is 0.01. The delta loss for early stopping. ")
parser.add_argument("-dropout", type=float, default=0.1,
help="Input. Default is 0.1. The dropout rate. ")
parser.add_argument("-alpha", type=float, default=0.1,
help="Input. Default is 0.1. The alpha value. ")
parser.add_argument("-train", type=int, default=1,
help="Input. Default is 1. Whether train or predict. \n"
"1: train, 0: predict. ")
parser.add_argument("-pooling", type=int, default=0,
help="Input. Default is 0. Whether using maxpooling. \n"
"1: with pooling, 0: no pooling. ")
parser.add_argument("-n_features", default=3840, type=int,
help="Input. Default is 3840. Number of features in the input dataset.")
parser.add_argument("-reshape", type=int, default=[64, 60, 1], nargs="+",
help="Input. Default is 64 60 1. Reshape the dataset. ")
parser.add_argument("-remove_H", type=int, default=0,
help="Input, optional. Default is 0. Whether remove hydrogens. ")
args = parser.parse_args()
if len(sys.argv) < 3:
parser.print_help()
sys.exit(0)
X, y = None, []
do_eval = False
global alpha
alpha = args.alpha
for i, fn in enumerate(args.fn_train):
if os.path.exists(fn):
df = pd.read_csv(fn, index_col=0, header=0).dropna()
if args.remove_H:
df = remove_all_hydrogens(df, args.n_features)
print("DataFrame Shape", df.shape)
if args.train:
if args.y_col[0] in df.columns.values:
y = y + list(df[args.y_col[0]].values)
else:
print("No such column %s in input file. " % args.y_col[0])
if i == 0:
X = df.values[:, :args.n_features]
else:
X = np.concatenate((X, df.values[:, :args.n_features]), axis=0)
Xval, yval = None, []
for i, fn in enumerate(args.fn_validate):
if os.path.exists(fn):
df = pd.read_csv(fn, index_col=0, header=0).dropna()
if args.remove_H:
df = remove_all_hydrogens(df, args.n_features)
if i == 0:
Xval = df.values[:, :args.n_features]
else:
Xval = np.concatenate((Xval, df.values[:, :args.n_features]), axis=0)
if args.train:
yval = yval + list(df[args.y_col[-1]].values)
Xtest, ytest = None, []
for i, fn in enumerate(args.fn_test):
if os.path.exists(fn):
df = pd.read_csv(fn, index_col=0, header=0).dropna()
if args.remove_H:
df = remove_all_hydrogens(df, args.n_features)
if i == 0:
Xtest = df.values[:, :args.n_features]
else:
Xtest = np.concatenate((Xtest, df.values[:, :args.n_features]), axis=0)
if args.train:
ytest = ytest + list(df[args.y_col[-1]].values)
print("DataSet Loaded")
if args.train > 0:
if not os.path.exists(args.prev_scaler):
scaler = preprocessing.StandardScaler()
X_train_val = np.concatenate((X, Xval), axis=0)
scaler.fit(X_train_val)
else:
scaler = joblib.load(args.scaler)
joblib.dump(scaler, args.scaler)
Xtrain = scaler.transform(X).reshape((-1, args.reshape[0],
args.reshape[1],
args.reshape[2]))
Xval = scaler.transform(Xval).reshape((-1, args.reshape[0],
args.reshape[1],
args.reshape[2]))
Xtest = scaler.transform(Xtest).reshape((-1, args.reshape[0],
args.reshape[1],
args.reshape[2]))
ytrain = np.array(y).reshape((-1, 1))
yval = np.array(yval).reshape((-1, 1))
ytest = np.array(ytest).reshape((-1, 1))
print("DataSet Scaled")
if not os.path.exists(args.prev_model):
model = create_model((args.reshape[0], args.reshape[1], args.reshape[2]),
lr=args.lr_init, dropout=args.dropout, maxpool=args.pooling)
else:
model = tf.keras.models.load_model(args.model,
custom_objects={'RMSE': RMSE,
'PCC': PCC,
'PCC_RMSE': PCC_RMSE})
stopping = [[0, 999.9], ]
history = []
# train the model
for e in range(1, args.epochs+1):
model.fit(Xtrain, ytrain, validation_data=(Xval, yval),
batch_size=args.batch, epochs=1, verbose=1)
ytrain_pred = model.predict(Xtrain).ravel()
loss = pcc_rmse(ytrain.ravel(), ytrain_pred)
pcc_train = pcc(ytrain.ravel(), ytrain_pred)
rmse_train = rmse(ytrain.ravel(), ytrain_pred)
yval_pred = model.predict(Xval).ravel()
loss_val = pcc_rmse(yval.ravel(), yval_pred)
pcc_val = pcc(yval.ravel(), yval_pred)
rmse_val = rmse(yval.ravel(), yval_pred)
ytest_pred = model.predict(Xtest).ravel()
loss_test = pcc_rmse(ytest.ravel(), ytest_pred)
pcc_test = pcc(ytest.ravel(), ytest_pred)
rmse_test = rmse(ytest.ravel(), ytest_pred)
history.append([e, loss, pcc_train, rmse_train,
loss_val, pcc_val, rmse_val,
loss_test, pcc_test, rmse_test])
hist = pd.DataFrame(history, columns=['epoch', 'loss', 'pcc_train', 'rmse_train',
'loss_val', 'pcc_val', 'rmse_val',
'loss_test', 'pcc_test', 'rmse_test'])
if args.log == "":
log = "log_batch%d_dropout%.1f_alpha%.1f_withH%d.csv" % \
(args.batch, args.dropout, args.alpha, args.remove_H)
else:
log = args.log
hist.to_csv(log, header=True, index=False, sep=",", float_format="%.4f")
print("EPOCH:%d Loss:%.3f RMSE:%.3f PCC:%.3f LOSS_VAL:%.3f RMSE:%.3f PCC:%.3f LOSS_TEST:%.3f RMSE_TEST:%.3f PCC_TEST:%.3f"%
(e, loss, rmse_train, pcc_train, loss_val, rmse_val, pcc_val, loss_test, rmse_test, pcc_test ))
if stopping[-1][1] - loss_val >= args.delta_loss:
print("Model improve from %.3f to %.3f. Save model to %s."
% (stopping[-1][1], loss_val, args.model))
model.save(args.model)
stopping.append([e, loss_val])
else:
if e - stopping[-1][0] >= args.patience:
print("Get best model at epoch = %d." % stopping[-1][0])
break
else:
pass
else:
scaler = joblib.load(args.scaler)
Xs = scaler.transform(X).reshape((-1, args.reshape[0], args.reshape[1], args.reshape[2]))
model = tf.keras.models.load_model(args.model,
custom_objects={'RMSE': RMSE,
'PCC': PCC,
'PCC_RMSE': PCC_RMSE})
ypred = pd.DataFrame()
ypred['pKa_predicted'] = model.predict(Xs).ravel()
if do_eval:
print("PCC : %.3f" % pcc(ypred['pKa_predicted'].values, ytest))
print("RMSE: %.3f" % rmse(ypred['pKa_predicted'].values, ytest))
ypred['pKa_true'] = ytest
ypred.to_csv(args.out, header=True, index=True, float_format="%.3f")