-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsection-2.3.3.rkt
251 lines (205 loc) · 7.6 KB
/
section-2.3.3.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#lang racket
(define (element-of-set? x set)
(cond ((null? set) false)
((equal? x (car set)) true)
(else (element-of-set? x (cdr set)))))
(define (adjoin-set x set)
(if (element-of-set? x set)
set
(cons x set)))
(define (intersection-set set1 set2)
(cond ((or (null? set1) (null? set2)) '())
((element-of-set? (car set1) set2)
(cons (car set1) (intersection-set (cdr set1) set2)))
(else (intersection-set (cdr set1) set2))))
; ex 2.59
(define (union-set a b)
(cond
[(null? a) b]
[(null? b) a]
[(element-of-set? (car a) b) (union-set (cdr a) b)]
[else (cons (car a) (union-set (cdr a) b))]))
; ex 2.60
; element-of-set is the same as before.
; faster
(define (adjoin-set-2.60 x s)
(cons x s))
; faster
(define (union-set-2.60 a b)
(append a b))
; intersection-set is the same as before, but it's slower because the lists are
; generally longer.
(define (element-of-set-ordered? x set)
(cond ((null? set) false)
((= x (car set)) true)
((< x (car set)) false)
(else (element-of-set-ordered? x (cdr set)))))
(define (intersection-set-ordered set1 set2)
(if (or (null? set1) (null? set2))
'()
(let ((x1 (car set1)) (x2 (car set2)))
(cond ((= x1 x2)
(cons x1 (intersection-set-ordered (cdr set1)
(cdr set2))))
((< x1 x2)
(intersection-set-ordered (cdr set1) set2))
((< x2 x1)
(intersection-set-ordered set1 (cdr set2)))))))
; ex 2.61
(define (adjoin-set-ordered x s)
(cond
[(null? s) (cons x '())]
[(< x (car s)) (cons x s)]
[(= x (car s)) s]
[else (cons (car s) (adjoin-set-ordered x (cdr s)))]))
; ex 2.62
(define (union-set-ordered a b)
(cond
[(null? a) b]
[(null? b) a]
[(= (car a) (car b)) (union-set-ordered (cdr a) b)]
[(< (car a) (car b)) (cons (car a) (union-set-ordered (cdr a) b))]
[else (cons (car b) (union-set-ordered a (cdr b)))]))
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
(list entry left right))
(define (element-of-set-tree? x set)
(cond ((null? set) false)
((= x (entry set)) true)
((< x (entry set))
(element-of-set-tree? x (left-branch set)))
((> x (entry set))
(element-of-set-tree? x (right-branch set)))))
(define (adjoin-set-tree x set)
(cond ((null? set) (make-tree x '() '()))
((= x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set-tree x (left-branch set))
(right-branch set)))
((> x (entry set))
(make-tree (entry set)
(left-branch set)
(adjoin-set-tree x (right-branch set))))))
; It's in-order traversal.
(define (tree->list-1 tree)
(if (null? tree)
'()
(append (tree->list-1 (left-branch tree))
(cons (entry tree)
(tree->list-1
(right-branch tree))))))
(define (tree->list-2 tree)
(define (copy-to-list tree result-list)
(if (null? tree)
result-list
(copy-to-list (left-branch tree)
(cons (entry tree)
(copy-to-list
(right-branch tree)
result-list)))))
(copy-to-list tree '()))
(define (tree->list-preorder tree)
(if (null? tree)
'()
(append (list (entry tree))
(tree->list-preorder (left-branch tree))
(tree->list-preorder (right-branch tree)))))
(define tree1 (make-tree 7
(make-tree 3
(make-tree 1 '() '())
(make-tree 5 '() '()))
(make-tree 9
'()
(make-tree 11 '() '()))))
(define tree2 (make-tree 3
(make-tree 1 '() '())
(make-tree 7
(make-tree 5 '() '())
(make-tree 9
'()
(make-tree 11 '() '())))))
(define tree3 (make-tree 5
(make-tree 3
(make-tree 1 '() '())
'())
(make-tree 9
(make-tree 7 '() '())
(make-tree 11 '() '()))))
(define tree4 (make-tree 15
(make-tree 13
(make-tree 1 '() '())
(make-tree 14 '() '()))
(make-tree 20
'()
(make-tree 25
(make-tree 22 '() '())
(make-tree 29 '() '())))))
; ex 2.63
; a
; 1. Two procedures produce the same result.
; 2. '(1 3 5 7 9 11)
; b
; I think it is...
; ex 2.64
(define (list->tree elements)
(car (partial-tree elements (length elements))))
(define (partial-tree elts n)
(if (= n 0)
(cons '() elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result
(partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))
(right-result
(partial-tree
(cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts
(cdr right-result)))
(cons (make-tree this-entry
left-tree
right-tree)
remaining-elts))))))))
; a
(define (partial-tree-* elts n)
(if (= n 0)
(cons '() elts)
(let* ([left-size (quotient (- n 1) 2)]
[left-result (partial-tree-* elts left-size)]
[left-tree (car left-result)]
[non-left-elts (cdr left-result)]
[right-size (- n (+ left-size 1))]
[this-entry (car non-left-elts)]
[right-result (partial-tree-* (cdr non-left-elts) right-size)]
[right-tree (car right-result)]
[remaining-elts (cdr right-result)])
(cons (make-tree this-entry
left-tree
right-tree)
remaining-elts))))
; Maybe rewriting this procedure using let* will make it more clear.
; partial-tree makes a tree off three parts: an element in the middle of the
; (ordered) list, which is the root of the tree; a sublist containning all the
; elements smaller than the root, which is the left branch; a sublist
; containning all the elements bigger than the root, which is the right branch.
; It's recursively called on the two sublists, which in turn makes a tree off
; three parts, to make subtrees.
; ex 2.65
(define (union-set-tree a b)
(list->tree (union-set-ordered (tree->list-1 a) (tree->list-1 b))))
(define (intersection-set-tree a b)
(list->tree (intersection-set-ordered (tree->list-1 a) (tree->list-1 b))))
; ex 2.66
(define (lookup q db)
(cond
[(null? db) '()]
[(equal? q (key (car db))) (car db)]
[(< q (key (car db))) (lookup q (left-branch db))]
[(> q (key (car db))) (lookup q (right-branch db))]))