-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathensemble_track1_8methods.py
63 lines (59 loc) · 3.33 KB
/
ensemble_track1_8methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import os
import torch
import numpy as np
import cv2
import hdf5storage as hdf5
import utils
if __name__ == "__main__":
# ----------------------------------------
# Initialize the parameters
# ----------------------------------------
parser = argparse.ArgumentParser()
# Pre-train, saving, and loading parameters
parser.add_argument('--path1', type = str, default = './test/track1/0', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path2', type = str, default = './test/track1/1', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path3', type = str, default = './test/track1/2', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path4', type = str, default = './test/track1/3', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path5', type = str, default = './test/track1/4', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path6', type = str, default = './test/track1/5', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path7', type = str, default = './test/track1/6', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--path8', type = str, default = './test/track1/7', \
help = 'load the pre-trained model with certain epoch, None for pre-training')
parser.add_argument('--val_path', type = str, default = './ensemble', help = 'saving path that is a folder')
parser.add_argument('--task_name', type = str, default = 'track1', help = 'task name for loading networks, saving, and log')
# NTIRE2020_Validation_Clean NTIRE2020_Validation_RealWorld
opt = parser.parse_args()
sample_folder = os.path.join(opt.val_path, opt.task_name)
utils.check_path(sample_folder)
imglist = utils.get_jpgs(opt.path1)
for imgname in imglist:
# Read
data_path1 = os.path.join(opt.path1, imgname)
data1 = hdf5.loadmat(data_path1)['cube']
data_path2 = os.path.join(opt.path2, imgname)
data2 = hdf5.loadmat(data_path2)['cube']
data_path3 = os.path.join(opt.path3, imgname)
data3 = hdf5.loadmat(data_path3)['cube']
data_path4 = os.path.join(opt.path4, imgname)
data4 = hdf5.loadmat(data_path4)['cube']
data_path5 = os.path.join(opt.path5, imgname)
data5 = hdf5.loadmat(data_path5)['cube']
data_path6 = os.path.join(opt.path6, imgname)
data6 = hdf5.loadmat(data_path6)['cube']
data_path7 = os.path.join(opt.path7, imgname)
data7 = hdf5.loadmat(data_path7)['cube']
data_path8 = os.path.join(opt.path8, imgname)
data8 = hdf5.loadmat(data_path8)['cube']
data_avg = (data1 + data2 + data3 + data4 + data5 + data6 + data7 + data8) / 8
# Save
save_img_path = os.path.join(sample_folder, imgname)
print(save_img_path)
hdf5.write(data = data_avg, path = 'cube', filename = save_img_path, matlab_compatible = True)