-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
213 lines (170 loc) · 7.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import logging
import os
import argparse
import random
import json
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from collections import defaultdict
from sklearn.metrics import f1_score
from transformers import *
from utils import seed_everything, DialogueDataset, create_mini_batch
logger = logging.getLogger()
def init_logging(args):
"""logging设置和参数信息打印"""
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s | %(message)s", "%Y-%m-%d %H:%M:%S")
chlr = logging.StreamHandler()
chlr.setFormatter(formatter)
logger.addHandler(chlr)
logger.info("====== parameters setting =======")
logger.info("data_dir: " + str(args.data_dir))
logger.info("save_dir: " + str(args.save_dir))
logger.info("num_epoch: " + str(args.num_epoch))
logger.info("batch_size: " + str(args.batch_size))
logger.info("learning_rate: " + str(args.learning_rate))
logger.info("random_seed: " + str(args.random_seed))
logger.info("evaluate_steps: " + str(args.evaluate_steps))
"""加载预训练模型"""
def build_model():
# 使用中文 BERT
# model_version = "bert-base-chinese"
model_version = "bert_models/chinese-roberta-wwm-ext-large"
# NUM_LABELS = 3
NUM_LABELS = 4
tokenizer = BertTokenizer.from_pretrained(os.path.join(model_version, "vocab.txt"))
# tokenizer = BertTokenizer.from_pretrained(model_version)
model = BertForSequenceClassification.from_pretrained(model_version, num_labels=NUM_LABELS)
"""获得设备类型"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
logger.info("***** Model Loaded *****")
return model, tokenizer
# def save_result(eids, attrs, preds):
# name = {
# "eids": eids,
# "attrs": attrs,
# "preds": preds
# }
# ret_df = pd.DataFrame(name)
# ret_df.to_csv('ret.csv',index=False)
def evaluate(model, dataloader, compute_acc=False):
predictions = None
correct = 0
total = 0
eids, attrs, y_trues = [], [], []
model.eval()
with torch.no_grad():
# 遍历整个数据集
for data in dataloader:
# 将所有 tensors 移到 GPU 上
eid = data[0]
y_true = data[4]
attr = data[5]
if next(model.parameters()).is_cuda:
data = [t.to("cuda") for t in data[1:4] if t is not None]
tokens_tensors, segments_tensors, masks_tensors = data
outputs = model(input_ids=tokens_tensors,
token_type_ids=segments_tensors,
attention_mask=masks_tensors)
logits = outputs[0]
_, pred = torch.max(logits.data, 1)
# 计算分类准确率
# if compute_acc:
# labels = data[3]
# total += labels.size(0)
# correct += (pred == labels).sum().item()
# 记录当前batch
if predictions is None:
predictions = pred
eids = eid
attrs = attr
y_trues = y_true.tolist()
else:
predictions = torch.cat((predictions, pred))
eids.extend(eid)
attrs.extend(attr)
y_trues.extend(y_true.tolist())
# if compute_acc:
# acc = correct / total
# return eids, attrs, y_trues, predictions, acc
return eids, attrs, y_trues, predictions
def train(model, trainloader, devloader, args):
# 训练模式
model.train()
# 使用 Adam 优化器
# optimizer = torch.optim.Adam(model.parameters(), lr=3e-5)
# optimizer = AdamW(model.parameters(), lr=args.learning_rate, eps=1e-8)
# 设置optimizer、linear warmup、decay
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.0},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,
betas=(0.9, 0.98), # according to RoBERTa paper
lr=args.learning_rate,
eps=1e-8)
EPOCHS = args.num_epoch # 训练轮数
batchs = 0 # batchs 数
best_f1 = 0
min_loss = 99999.9
for epoch in range(EPOCHS):
running_loss = 0.0
for data in trainloader:
batchs = batchs + 1
tokens_tensors, segments_tensors, \
masks_tensors, labels = [t.to("cuda") for t in data[1:5]]
# 梯度置零
optimizer.zero_grad()
# forward pass
outputs = model(input_ids=tokens_tensors,
token_type_ids=segments_tensors,
attention_mask=masks_tensors,
labels=labels)
loss = outputs[0]
# backward
loss.backward()
optimizer.step()
# 记录当前 batch loss
running_loss += loss.item()
if batchs % args.evaluate_steps == 0:
# 计算dev分类acc和f1
eids, attrs, y_trues, preds = evaluate(model, devloader)
f1 = f1_score(y_trues, preds.cpu(),average='micro')
# save model
if f1 >= best_f1:
best_f1 = f1
torch.save(model.state_dict(),os.path.join(args.save_dir,'best_params.pth'))
# save_result(eids, attrs, preds.cpu())
logger.info("best performer here. Saving model checkpoint to %s", args.save_dir)
if loss.item() < min_loss:
min_loss = loss.item()
torch.save(model.state_dict(),os.path.join(args.save_dir,'net_params.pth'))
logger.info("min loss here. Saving model checkpoint to %s", args.save_dir)
logger.info('[epoch %d, batch %d] train loss: %.3f, dev f1: %.3f' %
(epoch, batchs, loss.item(), f1))
model.train() # 切换回来
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', '-dd', type=str, default='data/data4', help='Train/dev data path')
parser.add_argument('--save_dir', '-sd', type=str, default='./save_model', help='Path to save, load model')
parser.add_argument('--num_epoch', '-ne', type=int, default=5, help='Total number of training epochs to perform')
parser.add_argument('--batch_size', '-bs', type=int, default=8, help='Batch size for trainging')
parser.add_argument('--learning_rate', '-lr', type=float, default=1e-5, help='learning rate')
parser.add_argument('--random_seed', '-rs', type=int, default=66, help='Random seed')
parser.add_argument('--evaluate_steps', '-ls', type=int, default=200, help='Evaluate every X updates steps')
args = parser.parse_args()
seed_everything(args.random_seed)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
init_logging(args)
model, tokenizer = build_model()
trainset = DialogueDataset(os.path.join(args.data_dir,"train.csv"), "train", tokenizer=tokenizer)
trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, collate_fn=create_mini_batch)
devset = DialogueDataset(os.path.join(args.data_dir,"dev.csv"), "dev", tokenizer=tokenizer)
devloader = DataLoader(devset, batch_size=args.batch_size, shuffle=False, collate_fn=create_mini_batch)
train(model, trainloader, devloader, args)