-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcall_f1.py
48 lines (44 loc) · 1.28 KB
/
call_f1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import json
import numpy
import csv
def load_json(path: str):
'''读取json文件'''
with open(path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def cal_f1_score(preds, golds):
"""样本级别的症状识别评价方式"""
assert len(preds) == len(golds)
p_sum = 0
r_sum = 0
hits = 0
num = 0
for pred, gold in zip(preds, golds):
p_sum += len(pred)
r_sum += len(gold)
for k, v in pred.items():
# if k in gold:
if k in gold and v == gold[k]:
hits += 1
p = hits / p_sum if p_sum > 0 else 0
r = hits / r_sum if r_sum > 0 else 0
f1 = 2 * p * r / (p + r) if (p + r) > 0 else 0
return p, r, f1
def eval(gold_data, pred_data):
"""评估F1值"""
assert len(gold_data) == len(pred_data)
golds = []
preds = []
eids = list(gold_data.keys())
for eid in eids:
gold_type = gold_data[eid]
pred_type = pred_data[eid]
golds.append(gold_type)
preds.append(pred_type)
assert len(golds) == len(preds)
_, _, f1 = cal_f1_score(preds, golds)
print('Test F1 score {}%'.format(round(f1 * 100, 4)))
# calculate f1
gold_test = load_json('dev_label.json')
pred_test = load_json('dev_torch.json')
eval(gold_test, pred_test)