-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathwoe.py
349 lines (315 loc) · 16.2 KB
/
woe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*-
"""
@Time: 2018/8/21 11:34
@Author: zhaoxingfeng
@Function:Weight of Evidence,基于iv值最大思想求最优分箱
@Version: V1.3
参考文献:
[1] kingsam_. 数据挖掘模型中的IV和WOE详解[DB/OL].https://blog.csdn.net/kevin7658/article/details/50780391/.
[2] boredbird. woe[DB/OL].https://github.com/boredbird/woe.
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import copy
from sklearn.externals import joblib
pd.set_option('display.max_rows', 500)
pd.set_option('display.width', 1000)
pd.set_option('display.max_columns', 1000)
pd.set_option('expand_frame_repr', False)
# 存储分裂过程中的切分点、woe、iv等信息
class Tree(object):
def __init__(self):
self.bin_value_list = []
self.split_value = None
self.sub_sample_cnt = None
self.sub_sample_bad_cnt = None
self.sub_sample_good_cnt = None
self.iv = None
self.woe = None
self.tree_left = None
self.tree_right = None
# 以JSON形式打印树结构,用于调试代码
def describe_tree(self):
if not self.tree_left or not self.tree_right:
tree_node = "{iv:" + str(self.iv) + \
",woe:" + str(self.woe) + \
",bin_value_list:" + str(self.bin_value_list) + \
",sub_sample_cnt:" + str(self.sub_sample_cnt) + \
",sub_sample_bad_cnt:" + str(self.sub_sample_bad_cnt) + \
",sub_sample_good_cnt:" + str(self.sub_sample_good_cnt) + "}"
return tree_node
left_info = self.tree_left.describe_tree()
right_info = self.tree_right.describe_tree()
tree_structure = "{bin_value_list:" + str(self.bin_value_list) + \
",split_value:" + str(self.split_value) + \
",sub_sample_cnt:" + str(self.sub_sample_cnt) + \
",sub_sample_bad_cnt:" + str(self.sub_sample_bad_cnt) + \
",sub_sample_good_cnt:" + str(self.sub_sample_good_cnt) + \
",left_tree:" + left_info + \
",right_tree:" + right_info + "}"
return tree_structure
# 从分箱树结构中获取每一箱的woe值、切分点、离散特征取值集合
def format_tree(self, tree, woe_iv_list, split_value_list):
if tree.split_value == None:
tree_node = {"bin_value_list": tree.bin_value_list,
"iv": tree.iv,
"woe": tree.woe,
"sub_sample_cnt": tree.sub_sample_cnt,
"sub_sample_bad_cnt": tree.sub_sample_bad_cnt,
"sub_sample_good_cnt": tree.sub_sample_good_cnt}
woe_iv_list.append(tree_node)
return woe_iv_list, split_value_list
self.format_tree(tree.tree_left, woe_iv_list, split_value_list)
split_value = tree.split_value
split_value_list.append(split_value)
self.format_tree(tree.tree_right, woe_iv_list, split_value_list)
return woe_iv_list, split_value_list
class WoeFeatureProcess(object):
def __init__(self, path_conf, path_woe_rule, min_sample_rate=0.1, min_iv=0.0005):
"""
:param path_conf: 描述每个特征的情况
is_continous: 1为连续型变量,0为离散型变量,-1表示不参与分箱
var_dtype: 特征数据类型
var_name: 特征名
:param path_woe_rule: 存储csv格式特征分箱
:param min_sample_rate: 每个分箱最小样本比例(*总体样本)
:param min_iv: 每个分箱最小iv,如果小于给定值则该箱被合并
"""
self.dataset = None
self.conf = pd.read_csv(path_conf)
self.continous_var_list = self.conf[self.conf['is_continous'] == 1]['var_name']
self.discrete_var_list = self.conf[self.conf['is_continous'] == 0]['var_name']
self.woe_rule_dict = dict()
self.woe_rule_df = pd.DataFrame()
self.path_woe_rule = path_woe_rule
self.min_sample_rate = min_sample_rate
self.total_bad_cnt = 1
self.total_good_cnt = 1
self.min_sample = 1
self.min_iv = min_iv
def fit(self, dataset):
if 'label' not in dataset.columns:
raise ValueError("The dataset must contains label(0&1)!")
self.dataset = dataset
self.total_bad_cnt = dataset[dataset['label'] == 1].__len__()
self.total_good_cnt = dataset[dataset['label'] == 0].__len__()
self.min_sample = int(len(self.dataset) * self.min_sample_rate)
print("PROCESS CONTINOUS VARIABLES".center(80, '='))
for var in self.continous_var_list:
if var in self.dataset.columns:
print(var.center(80, '='))
self.dataset[var] = self.dataset[var].astype(self.conf.loc[self.conf['var_name'] == var, 'var_dtype'].values[0])
var_df = self.fit_continous(self.dataset[[var, 'label']], var)
self.woe_rule_df = var_df if self.woe_rule_df.empty else pd.concat([self.woe_rule_df, var_df], ignore_index=1)
print("PROCESS DISCRETE VARIABLES".center(80, '='))
for var in self.discrete_var_list:
if var in self.dataset.columns:
print(var.center(80, '='))
self.dataset[var] = self.dataset[var].astype(self.conf.loc[self.conf['var_name'] == var, 'var_dtype'].values[0])
var_df = self.fit_discrete(self.dataset[[var, 'label']], var)
self.woe_rule_df = var_df if self.woe_rule_df.empty else pd.concat([self.woe_rule_df, var_df], ignore_index=1)
cols = ['var_name', 'bin_value_list', 'split_left', 'split_right', 'sub_sample_cnt', 'sub_sample_bad_cnt',
'sub_sample_good_cnt', 'woe', 'iv_list', 'iv_sum']
self.woe_rule_df = self.woe_rule_df.sort_values(by=['var_name', 'split_left'], ascending=True)
self.woe_rule_df = self.woe_rule_df.sort_values(by=['iv_sum', 'var_name'], ascending=False)
self.woe_rule_df = self.woe_rule_df[cols].reset_index(drop=True)
self.woe_rule_df.to_csv(self.path_woe_rule, index=None, float_format="%.4f")
for var, grp in self.woe_rule_df.groupby(['var_name']):
if isinstance(grp.bin_value_list.tolist()[0], list):
self.woe_rule_dict[var] = list(zip(grp.bin_value_list, grp.woe))
else:
self.woe_rule_dict[var] = list(zip(grp.split_right, grp.woe))
del self.dataset
# 处理连续型变量
def fit_continous(self, dataset, var):
var_tree = self._fit_continous(dataset, var)
print(var_tree.describe_tree())
woe_iv_list, split_value_list = var_tree.format_tree(var_tree, [], [])
var_df = pd.DataFrame({"var_name": var,
"bin_value_list": None,
"split_left": [float("-inf")] + split_value_list,
"split_right": split_value_list + [float("+inf")],
"sub_sample_cnt": [x['sub_sample_cnt'] for x in woe_iv_list],
"sub_sample_bad_cnt": [x['sub_sample_bad_cnt'] for x in woe_iv_list],
"sub_sample_good_cnt": [x['sub_sample_good_cnt'] for x in woe_iv_list],
"woe": [x['woe'] for x in woe_iv_list],
"iv_list": [x['iv'] for x in woe_iv_list]
})
var_df['iv_sum'] = var_df['iv_list'].sum()
return var_df
# 处理连续型变量
def _fit_continous(self, dataset, var):
var_woe, var_iv = self.calculate_woe_iv(dataset)
if dataset['label'].unique().__len__() <= 1 or dataset[var].unique().__len__() <= 1:
tree = Tree()
tree.iv = var_iv
tree.woe = var_woe
tree.sub_sample_cnt = dataset.__len__()
tree.sub_sample_bad_cnt = dataset[dataset['label'] == 1].__len__()
tree.sub_sample_good_cnt = dataset[dataset['label'] == 0].__len__()
return tree
best_split_value, best_split_iv, best_dataset_left, best_dataset_right = \
self.choose_best_split(dataset, var)
if best_split_iv <= var_iv:
tree = Tree()
tree.iv = var_iv
tree.woe = var_woe
tree.sub_sample_cnt = dataset.__len__()
tree.sub_sample_bad_cnt = dataset[dataset['label'] == 1].__len__()
tree.sub_sample_good_cnt = dataset[dataset['label'] == 0].__len__()
return tree
else:
tree = Tree()
tree.iv = var_iv
tree.woe = var_woe
tree.split_value = best_split_value
tree.sub_sample_cnt = dataset.__len__()
tree.sub_sample_bad_cnt = dataset[dataset['label'] == 1].__len__()
tree.sub_sample_good_cnt = dataset[dataset['label'] == 0].__len__()
tree.tree_left = self._fit_continous(best_dataset_left, var)
tree.tree_right = self._fit_continous(best_dataset_right, var)
return tree
# 处理离散型变量
def fit_discrete(self, dataset, var):
value_woe_dict = {}
for value in dataset[var].unique():
woe, iv = self.calculate_woe_iv(dataset[dataset[var] == value])
value_woe_dict[value] = woe
dataset[var] = dataset[var].map(value_woe_dict)
temp = sorted(value_woe_dict.iteritems(), key=lambda x: x[1])
bin_woe_list, bin_value_list = [x[1] for x in temp], [x[0] for x in temp]
var_tree = self._fit_discrete(dataset, var, bin_value_list, bin_woe_list)
print(var_tree.describe_tree())
woe_iv_list, split_value_list = var_tree.format_tree(var_tree, [], [])
var_df = pd.DataFrame({"var_name": var,
"bin_value_list": [x['bin_value_list'] for x in woe_iv_list],
"split_left": None,
"split_right": None,
"sub_sample_cnt": [x['sub_sample_cnt'] for x in woe_iv_list],
"sub_sample_bad_cnt": [x['sub_sample_bad_cnt'] for x in woe_iv_list],
"sub_sample_good_cnt": [x['sub_sample_good_cnt'] for x in woe_iv_list],
"woe": [x['woe'] for x in woe_iv_list],
"iv_list": [x['iv'] for x in woe_iv_list]
})
var_df['iv_sum'] = var_df['iv_list'].sum()
return var_df
# 处理离散型变量
def _fit_discrete(self, dataset, var, bin_value_list, bin_woe_list):
var_woe, var_iv = self.calculate_woe_iv(dataset)
if dataset['label'].unique().__len__() <= 1 or dataset[var].unique().__len__() <= 1:
tree = Tree()
tree.bin_value_list = bin_value_list
tree.iv = var_iv
tree.woe = var_woe
tree.sub_sample_cnt = dataset.__len__()
tree.sub_sample_bad_cnt = dataset[dataset['label'] == 1].__len__()
tree.sub_sample_good_cnt = dataset[dataset['label'] == 0].__len__()
return tree
best_split_value, best_split_iv, best_dataset_left, best_dataset_right = \
self.choose_best_split(dataset, var)
if best_split_iv <= var_iv:
tree = Tree()
tree.bin_value_list = bin_value_list
tree.iv = var_iv
tree.woe = var_woe
tree.sub_sample_cnt = dataset.__len__()
tree.sub_sample_bad_cnt = dataset[dataset['label'] == 1].__len__()
tree.sub_sample_good_cnt = dataset[dataset['label'] == 0].__len__()
return tree
else:
ix = bin_woe_list.index(best_split_value)
tree = Tree()
tree.bin_value_list = bin_value_list
tree.iv = var_iv
tree.woe = var_woe
tree.split_value = best_split_value
tree.sub_sample_cnt = dataset.__len__()
tree.sub_sample_bad_cnt = dataset[dataset['label'] == 1].__len__()
tree.sub_sample_good_cnt = dataset[dataset['label'] == 0].__len__()
tree.tree_left = self._fit_discrete(best_dataset_left, var, bin_value_list[:ix+1], bin_woe_list[:ix+1])
tree.tree_right = self._fit_discrete(best_dataset_right, var, bin_value_list[ix+1:], bin_woe_list[ix+1:])
return tree
# 计算给定样本的woe、iv
def calculate_woe_iv(self, dataset):
sub_bad_cnt = dataset[dataset['label'] == 1].__len__()
sub_bad_rate = (sub_bad_cnt + 0.0001) * 1.0 / (self.total_bad_cnt + 0.0001)
sub_good_cnt = dataset[dataset['label'] == 0].__len__()
sub_good_rate = (sub_good_cnt + 0.0001) * 1.0 / (self.total_good_cnt + 0.0001)
res_woe = np.log(sub_bad_rate / sub_good_rate)
res_iv = (sub_bad_rate - sub_good_rate) * np.log(sub_bad_rate / sub_good_rate)
return round(res_woe, 4), round(res_iv, 4)
# 基于决策树分裂思想寻找最优切分点
def choose_best_split(self, dataset, var):
if dataset[var].unique().__len__() <= 50:
split_value_list = dataset[var].unique()
else:
split_value_list = np.unique(np.percentile(dataset[var], range(100)))
split_value_list = sorted([round(x, 4) for x in split_value_list])
best_split_value = None
best_split_iv = float("-inf")
best_dataset_left = None
best_dataset_right = None
for split_value in split_value_list:
dataset_left = dataset[dataset[var] <= split_value]
dataset_right = dataset[dataset[var] > split_value]
if dataset_right.__len__() < self.min_sample:
break
elif dataset_left.__len__() < self.min_sample:
continue
else:
woe_left, iv_left = self.calculate_woe_iv(dataset_left)
woe_right, iv_right = self.calculate_woe_iv(dataset_right)
if iv_left + iv_right > best_split_iv and iv_left >= self.min_iv and iv_right >= self.min_iv:
best_split_value = split_value
best_split_iv = iv_left + iv_right
best_dataset_left = dataset_left
best_dataset_right = dataset_right
return best_split_value, best_split_iv, best_dataset_left, best_dataset_right
# 绘制分箱后的woe趋势图:X-分箱号,Y-箱内woe值
def plot_woe_structure(self):
var_list = self.woe_rule_df['var_name'].unique().tolist()
for i in range(len(var_list)):
try:
woe_iv_list = self.woe_rule_df[self.woe_rule_df['var_name'] == var_list[i]]['woe'].tolist()
if len(woe_iv_list) >= 2:
plt.plot(range(len(woe_iv_list)), woe_iv_list, label=str(len(woe_iv_list)) + '_' + var_list[i])
except:
pass
plt.legend()
plt.show()
# 对原始样本进行woe转化
def transform(self, dataset):
dataset_copy = copy.deepcopy(dataset)
for var in dataset_copy.columns:
if var in self.woe_rule_dict.keys():
if isinstance(self.woe_rule_dict[var][0][0], list):
dataset_copy[var] = dataset_copy[var].apply(lambda x: self._transform_discrete(self.woe_rule_dict[var], x))
else:
dataset_copy[var] = dataset_copy[var].apply(lambda x: self._transform_continous(self.woe_rule_dict[var], x))
return dataset_copy
@staticmethod
def _transform_continous(sub_woe_rule, value):
for rule in sub_woe_rule:
if rule[0] >= value:
return rule[1]
return -99
@staticmethod
def _transform_discrete(sub_woe_rule, value):
for rule in sub_woe_rule:
if value in rule[0]:
return rule[1]
return -99
if __name__ == '__main__':
df = pd.read_csv("source/credit_card.csv")
woe = WoeFeatureProcess(path_conf="f_conf/credit_card.conf",
path_woe_rule="result/woe_rule.csv",
min_sample_rate=0.1,
min_iv=0.0005)
woe.fit(df)
joblib.dump(woe, "result/woe_rule.pkl")
woe = joblib.load("result/woe_rule.pkl")
print(woe.woe_rule_df)
woe.plot_woe_structure()
df_woed = woe.transform(df)
print(df_woed.head())