From 88a205f5c59e1607ca254257489a50432791def5 Mon Sep 17 00:00:00 2001 From: yonghakim Date: Mon, 23 May 2022 19:13:04 +0900 Subject: [PATCH] modify Moharam's derivation part --- notebooks/RCWA/RCWA_derivation.ipynb | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/notebooks/RCWA/RCWA_derivation.ipynb b/notebooks/RCWA/RCWA_derivation.ipynb index 5b80d2f..4076fe7 100644 --- a/notebooks/RCWA/RCWA_derivation.ipynb +++ b/notebooks/RCWA/RCWA_derivation.ipynb @@ -8,7 +8,7 @@ "source": [ "# Note on the derivation of the reflection and transmission coefficents in\n", "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings\n", - "M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord
\n", + "M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord
\n", "\n", "The final step in this paper seems straightforward but is actually non-trivial to work out to get the final working RCWA code" ] @@ -19,7 +19,7 @@ "source": [ "We start with a system of four equations:\n", "\n", - "$\\begin{align}\n", + "$\\begin{align*}\n", "\\begin{bmatrix}\n", "\\delta_{i0} \\\\ jn_Icos(\\theta)\\delta_{i0}\n", "\\end{bmatrix} +\n", @@ -46,17 +46,17 @@ "c^{+} \\\\\n", "c^{-} \\\\\n", "\\end{bmatrix}\n", - "\\end{align}$\n", + "\\end{align*}$\n", "\n", "This is the original form written in the paper, but it is more transparent to write them out so you see all four equations\n", "\n", "$\n", - "\\begin{align}\n", + "\\begin{align*}\n", "\\delta_{i0} + R &= Wc^{+}+WXc^{-} &(1)\\\\\n", "jn_{I}cos(\\theta) -jY_IR &= Vc^{+}-VXc^{-} &(2)\\\\\n", "T &= WXc^{+} + Wc^{-} &(3)\\\\\n", "jY_{II} &= VXc^{+} - Vc^{-} &(4)\n", - "\\end{align}\n", + "\\end{align*}\n", "$" ] }, @@ -78,7 +78,7 @@ "Now we can solve $c^{+}$ using the expression (3) and (4)\n", "\n", "$\n", - "\\begin{align}\n", + "\\begin{align*}\n", "jY_{II}T &= VXC^+ -V(W^{-1}(T-WXC^+)) \\\\\n", "jY_{II}T &= VXC^+ -VW^{-1}T+VW^{-1}WXC^+ \\\\\n", "&=(VX+VX)c^+ -VW^{-1}T \\\\\n", @@ -86,7 +86,7 @@ "c^+ &= 0.5X^{-1}V^{-1}(jY_{II}T + VW^{-1}T) \\\\\n", "&= 0.5X^{-1}V^{-1}(jY_{II} + VW^{-1})T \\\\\n", "&= 0.5X^{-1}(W^{-1} + jV^{-1}Y_{II})T \\\\\n", - "\\end{align}\n", + "\\end{align*}\n", "$" ] }, @@ -95,14 +95,14 @@ "source": [ "We can substitute this back into the expression for $c^{-}$
\n", "$\n", - "\\begin{align}\n", + "\\begin{align*}\n", "c^{-} &= W^{-1}\\bigg[T - WX\\big( 0.5X^{-1}V^{-1}(jY_{II}+VW^{-1})T\\big)\\bigg]\\\\\n", "&= W^{-1}\\bigg[T - 0.5WV^{-1}(jY_{II}+VW^{-1})T\\bigg] \\\\\n", "&= W^{-1}T - 0.5V^{-1}(jY_{II}+VW^{-1})T \\\\\n", "&= W^{-1}T - 0.5(V^{-1}jY_{II}+W^{-1})T \\\\\n", "&= 0.5W^{-1}T - 0.5V^{-1}jY_{II}T \\\\\n", "&= 0.5(W^{-1} -jV^{-1}Y_{II})T\n", - "\\end{align}\n", + "\\end{align*}\n", "$" ], "metadata": { @@ -115,21 +115,21 @@ "#### Now we mark the steps that substitutes our expressions above into the reflection equations\n", "First we rewrite the two reflection equations:
\n", "$\n", - "\\begin{align}\n", + "\\begin{align*}\n", "\\delta_{i0} + R &= Wc^{+}+WXc^{-} \\\\\n", "jn_{I}cos(\\theta) -jY_IR &= Vc^{+}-VXc^{-}\n", - "\\end{align}\n", + "\\end{align*}\n", "$\n", "\n", "Now we begin substitution:
\n", "$\n", - "\\begin{align}\n", + "\\begin{align*}\n", "\\begin{matrix}\n", "\\delta_{i0} + R = W\\bigg(0.5X^{-1}(W^{-1} +jV^{-1}Y_{II})T \\bigg)+WX\\bigg(0.5(W^{-1} -jV^{-1}Y_{II})T \\bigg) \\\\\n", "jn_{I}cos(\\theta) -jY_IR = V\\bigg(0.5X^{-1}(W^{-1} +jV^{-1}Y_{II})T \\bigg)-VX\\bigg(0.5(W^{-1} -jV^{-1}Y_{II})T \\bigg) \\\\\n", "\\vdots\n", "\\end{matrix}\n", - "\\end{align}\n", + "\\end{align*}\n", "$" ], "metadata": {