-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
334 lines (264 loc) · 14.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from predict import get_spacy_entities, get_noun_entities
import torch
import torch.nn as nn
import numpy as np
import nltk
from transformers import BertModel
from transformers import AdamW, get_linear_schedule_with_warmup
from utils import *
from data import *
def get_numberized_onto(onto, event_type_idx, role_type_idx):
num_onto = {}
for event_type in onto:
et_idx = event_type_idx[event_type]
roles = onto[event_type]
num_roles = [role_type_idx[role] for role in roles]
# num_roles.append(0)
num_onto.update({et_idx: num_roles.copy()})
return num_onto
class Linears(nn.Module):
"""Multiple linear layers with Dropout."""
def __init__(self, dimensions, activation='tanh', dropout_prob=0.3, bias=True):
super().__init__()
assert len(dimensions) > 1
self.layers = nn.ModuleList([nn.Linear(dimensions[i], dimensions[i + 1], bias=bias)
for i in range(len(dimensions) - 1)])
self.activation = getattr(torch, activation)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, inputs):
for i, layer in enumerate(self.layers):
if i > 0:
inputs = self.activation(inputs)
inputs = self.dropout(inputs)
inputs = layer(inputs)
return inputs
class ZeroShotModel(nn.Module):
def __init__(self, bert_name, train_role_types, test_role_types, train_onto, test_onto, train_event_types, test_event_types, dropout, bert_dim, ft_hidden_dim, role_hidden_dim, output_dim, alpha, device):
super(ZeroShotModel, self).__init__()
self.train_onto = train_onto
self.test_onto = test_onto
# ontology: {"Conflict:Attack": ["Attacker", "Victim", "Target", "Place"]}
self.train_idx_to_type = {v:k for k,v in train_event_types.items()}
self.test_idx_to_type = {v:k for k,v in test_event_types.items()}
# idx_to_type: {0: "Conflict:Attack"}
self.train_event_types = train_event_types
self.test_event_types = test_event_types
# event_types: {"Conflict:Attack": 0}
self.train_role_type_idx = train_role_types # {role_name: idx}
self.train_role_type_num = len(self.train_role_type_idx) - 1
self.test_role_type_idx = test_role_types # {role_name: idx}
self.test_role_type_num = len(self.test_role_type_idx) - 1
self.test_rev_role_type_idx = {v:k for k,v in self.test_role_type_idx.items()}
self.numberized_test_onto = get_numberized_onto(test_onto, test_event_types, test_role_types)
self.device = device
self.dropout = dropout
self.bert_dim = bert_dim
self.ft_hidden_dim = ft_hidden_dim
self.role_hidden_dim = role_hidden_dim
self.output_dim = output_dim
self.alpha = alpha
self.bert = BertModel.from_pretrained(bert_name)
self.role_name_encoder = Linears([bert_dim, role_hidden_dim, output_dim], dropout_prob=dropout)
self.text_ft_encoder = Linears([2*bert_dim, ft_hidden_dim, output_dim], dropout_prob=dropout)
self.cosine_sim_2 = nn.CosineSimilarity(dim=2)
self.cosine_sim_3 = nn.CosineSimilarity(dim=3)
self.bert.to(device)
def compute_train_role_reprs(self, tokenizer):
role_names = sorted(self.train_role_type_idx.items(), key=lambda x:x[1])
names = []
for name in role_names:
names.append(name[0])
train_role_reprs = get_bert_embeddings(names, self.bert, tokenizer, self.device)
self.train_role_reprs = train_role_reprs.detach()[1:, :]
def compute_test_role_reprs(self, tokenizer):
role_names = sorted(self.test_role_type_idx.items(), key=lambda x:x[1])
names = []
for name in role_names:
names.append(name[0])
test_role_reprs = get_bert_embeddings(names, self.bert, tokenizer, self.device)
self.test_role_reprs = test_role_reprs.detach()[1:, :]
def span_encode(self, bert_output, span_input):
# bert_output: (batch, seq_len, dim)
# span_input: (batch, num, seq_len)
# OUTPUT: (batch, num, dim)
dim = bert_output.shape[2]
num = span_input.shape[1]
avg_span_input = span_input / torch.sum(span_input, 2).unsqueeze(2)
avg_weights = avg_span_input.unsqueeze(3).repeat(1, 1, 1, dim)
bert_repeated = bert_output.unsqueeze(1).repeat(1, num, 1, 1)
span_output = torch.sum(bert_repeated * avg_weights, 2)
return span_output
def forward(self, batch):
# batch: {"input_ids", "attn_mask", "trigger_spans", "entity_spans", "label_idxs", "neg_label_idxs", "pair_mask"}
# pairs_num = batch["pair_mask"].sum()
bert_outputs = self.bert(batch["input_ids"], attention_mask=batch["attn_mask"])[0]
trigger_reprs = self.span_encode(bert_outputs, batch["trigger_spans"])
entity_reprs = self.span_encode(bert_outputs, batch["entity_spans"])
ta_reprs = torch.cat((trigger_reprs, entity_reprs), 2)
# minimize the distance between correct pairs
role_reprs = self.role_name_encoder(self.train_role_reprs) # (role_num, output_dim)
label_reprs = role_reprs[batch["label_idxs"]] # (bs, num, output_dim)
# print()
output_ta_reprs = self.text_ft_encoder(ta_reprs) # (bs, num, output_dim)
pos_cos_sim = self.cosine_sim_2(output_ta_reprs, label_reprs) # (bs, num)
# print(self.train_role_reprs.shape)
neg_label_reprs = role_reprs[batch["neg_label_idxs"]] # (bs, num, neg_role_num, output_dim)
repeated_ta_reprs = output_ta_reprs.unsqueeze(2).repeat(1, 1, self.train_role_type_num-1, 1)
neg_cos_sim = self.cosine_sim_3(repeated_ta_reprs, neg_label_reprs) # (bs, num, neg_role_num)
pos_cos_sims = pos_cos_sim.unsqueeze(2).repeat(1, 1, self.train_role_type_num-1)
hinge_matrix = torch.sum(torch.clamp(neg_cos_sim-pos_cos_sims+self.alpha, min=0), 2)
hinge_loss = (hinge_matrix * batch["train_pair_mask"]).sum()
# # min_loss = (self.cosine_sim_2(output_ta_reprs, label_reprs) * batch["pair_mask"]).sum() / pairs_num
# # maximize the distance between incorrect pairs
# neg_label_reprs = role_reprs[batch["neg_label_idxs"]] # (bs, num, neg_role_num, output_dim)
# repeated_ta_reprs = output_ta_reprs.unsqueeze(2).repeat(1, 1, self.train_role_type_num-1, 1)
# # print(neg_label_reprs.shape)
# # print(repreated_ta_reprs.shape)
# neg_cosine_sim = self.cosine_sim_3(repeated_ta_reprs, neg_label_reprs)
# max_loss = (torch.mean(neg_cosine_sim, 2) * batch["pair_mask"]).sum() / pairs_num
# # regularization: each cosine vector should be far from each other as far as possible.
# loss = -min_loss + self.alpha * max_loss
return hinge_loss
def predict(self, batch):
# batch: {"input_ids", "attn_mask", "trigger_spans", "entity_spans", "label_idxs", "neg_label_idxs", "trigger_idxs", "pair_mask"}
output_list = []
bs, max_num = batch["trigger_spans"].shape[0], batch["trigger_spans"].shape[1]
trigger_idxs = batch["trigger_idxs"] # (batch_num, max_num)
with torch.no_grad():
bert_outputs = self.bert(batch["input_ids"], attention_mask=batch["attn_mask"])[0]
trigger_reprs = self.span_encode(bert_outputs, batch["trigger_spans"])
entity_reprs = self.span_encode(bert_outputs, batch["entity_spans"])
ta_reprs = torch.cat((trigger_reprs, entity_reprs), 2)
output_ta_reprs = self.text_ft_encoder(ta_reprs) # (batch_size, pair_num, output_dim)
role_reprs = self.role_name_encoder(self.test_role_reprs) # (role_num, output_dim)
sum_mask = torch.sum(batch["pair_mask"], 1).long().tolist()
role_num = role_reprs.shape[0]
for i in range(bs):
output_i = []
pair_num_i = sum_mask[i]
ta_reprs_i = output_ta_reprs[i][0:pair_num_i]
repeated_ta_reprs_i = ta_reprs_i.unsqueeze(1).repeat(1, role_num, 1)
repeated_role_reprs = role_reprs.unsqueeze(0).repeat(pair_num_i, 1, 1)
cos_sim = self.cosine_sim_2(repeated_ta_reprs_i, repeated_role_reprs) # (pair_num_i, role_num)
# print(cos_sim[0])
event_type_idx_i = trigger_idxs[i].tolist()
# print(cos_sim)
for j in range(pair_num_i):
cos_sim_j = cos_sim[j]
event_type = event_type_idx_i[j]
role_idxs = self.numberized_test_onto[event_type]
role_scores = [cos_sim_j[idx].item() for idx in role_idxs]
idxs = np.argsort(-np.array(role_scores))
if role_scores[idxs[0]] - role_scores[idxs[1]] > 1.5 * self.alpha:
output_i.append(role_idxs[idxs[0]])
else:
output_i.append(-1)
output_list.append(output_i.copy())
return output_list
def change_test_ontology(self, test_ontology, test_event_types, test_role_types, tokenizer):
self.test_event_types = test_event_types
self.test_idx_to_type = {v:k for k,v in test_event_types.items()}
self.test_onto = test_ontology
self.test_role_type_idx = test_role_types # {role_name: idx}
self.test_role_type_idx.update({"unrelated object": -1})
self.test_rev_role_type_idx = {v:k for k,v in self.test_role_type_idx.items()}
self.test_role_type_num = len(self.test_role_type_idx) - 1
self.numberized_test_onto = get_numberized_onto(test_ontology, test_event_types, test_role_types)
self.compute_test_role_reprs(tokenizer)
def predict_one_example(self, tokenizer, data_item, spacy_model):
bert_inputs = tokenizer(data_item["sentence"], return_offsets_mapping=True)
input_ids = torch.LongTensor([bert_inputs["input_ids"]]).to(self.device)
attn_mask = torch.LongTensor([bert_inputs["attention_mask"]]).to(self.device)
offset_mapping = bert_inputs["offset_mapping"]
batch_input = {"input_ids": input_ids, "attn_mask": attn_mask}
triggers = data_item["events"]
entity_offsets = get_noun_entities(data_item["sentence"], spacy_model)
seq_len = len(bert_inputs["input_ids"])
trigger_span, entity_span = [], []
trigger_idxs = []
for i,trig in enumerate(triggers):
trigger = trig["trigger"]
for j,entity in enumerate(entity_offsets):
trig_s, trig_e = transform_offsets(trigger[0], trigger[1], offset_mapping)
ent_s, ent_e = transform_offsets(entity[0], entity[1], offset_mapping)
trig_list = transform_to_list(trig_s+1, trig_e+1, seq_len)
ent_list = transform_to_list(ent_s+1, ent_e+1, seq_len)
trigger_span.append(trig_list)
entity_span.append(ent_list)
trigger_idxs.append(self.test_event_types[trigger[-1]])
batch_input["trigger_spans"] = torch.FloatTensor([trigger_span]).to(self.device)
batch_input["entity_spans"] = torch.FloatTensor([entity_span]).to(self.device)
batch_input["trigger_idxs"] = torch.LongTensor([trigger_idxs]).to(self.device)
batch_input["pair_mask"] = torch.FloatTensor([[1.0 for _ in range(len(trigger_span))]])
# print(self.test_event_types)
# print(self.test_role_type_idx)
# print(self.numberized_test_onto)
# print(batch_input["input_ids"])
# print(batch_input["attn_mask"])
# print(batch_input["trigger_spans"])
# print(batch_input["entity_spans"])
# print(batch_input["trigger_idxs"])
# print(batch_input["pair_mask"])
output_list = self.predict(batch_input)[0]
output_item = deepcopy(data_item)
for i,trigger in enumerate(triggers):
args = []
for j,entity in enumerate(entity_offsets):
output_idx = i * len(entity_offsets) + j
res = output_list[output_idx]
if res != -1:
arg = [entity[0], entity[1], self.test_rev_role_type_idx[res]]
args.append(arg)
output_item["events"][i].update({"arguments": args})
return output_item
if __name__ == "__main__":
from data import *
with open("./data/train_ontology.json", 'r', encoding="utf-8") as f:
train_o = json.loads(f.read())
with open("./data/test_ontology.json", 'r', encoding="utf-8") as f:
test_o = json.loads(f.read())
train_dir = "./data/train.json"
test_dir = "./data/test.json"
t = BertTokenizerFast.from_pretrained("bert-large-uncased")
train_d = ZSLDataset(train_dir, t, train_o)
test_d = ZSLDataset(test_dir, t, test_o)
print(train_d.role_type_idxs)
print(test_d.role_type_idxs)
m = ZeroShotModel("bert-large-uncased", train_d.role_type_idxs, test_d.role_type_idxs, train_o, test_o, train_d.event_type_idxs, test_d.event_type_idxs, 0.3, 1024, 256, 128, 128, 0.3, 3)
m.to(3)
m.compute_train_role_reprs(t)
m.compute_test_role_reprs(t)
param_groups = [
{
'params': [p for n, p in m.named_parameters() if n.startswith('bert')],
'lr': 0.0001, 'weight_decay': 0.00005
},
{
'params': [p for n, p in m.named_parameters() if not n.startswith('bert')],
'lr': 0.0001, 'weight_decay': 0.00005
}
]
print(len(param_groups[0]["params"]))
print(len(param_groups[1]["params"]))
batch_size = 3
optimizer = AdamW(params=param_groups)
schedule = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=batch_size * 5, num_training_steps=batch_size * 100)
optimizer.zero_grad()
# for batch in DataLoader(train_d, batch_size=batch_size, shuffle=True, collate_fn=train_d.collate_fn):
# send_to_gpu(batch, 3)
# loss = m.forward(batch)
# print(loss)
# loss.backward()
# optimizer.step()
# schedule.step()
i = 0
print(m.numberized_test_onto)
for batch in DataLoader(train_d, batch_size=batch_size, shuffle=True, collate_fn=train_d.collate_fn):
print(torch.sum(batch["pair_mask"], 1))
print(batch["trigger_idxs"])
i += 1
send_to_gpu(batch, 3)
o = m.predict(batch)
print(o)
if i >= 1:
break