-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
144 lines (121 loc) · 4.93 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# -*- coding: utf-8 -*-
from typing import List
import logging
from nltk.metrics import edit_distance
import numpy as np
import pandas as pd
from sklearn.metrics import (recall_score, precision_score, f1_score,
accuracy_score, balanced_accuracy_score)
from src.reader import pos_dict
# logging settings
logger = logging.getLogger(__name__)
logging.basicConfig(
filename="../logs.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(lineno)d - %(name)s: %(message)s",
datefmt="%y-%m-%d %H:%M:%S"
)
def log_levenshtein(y_true: List[str], y_pred: List[str], sub: int = 1) \
-> float:
"""Compute the logarithmized Levenshtein distance.
Parameters
----------
y_true : List[str]
List of gold lemmata.
y_pred : List[str]
List of predicted lemmata.
sub : int, optional
Cost for a substition (deletion and insertion costs are 1).
The default is 1.
Returns
-------
float
Logarithmized Levenshtein distance.
"""
N = len(y_true)
try:
loglev = sum(np.log(edit_distance(y_true[i], y_pred[i],
substitution_cost=sub) + 1)
for i in range(N)) / N
return loglev
except Exception as e:
logger.error(e)
def levenshtein(y_true: List[str], y_pred: List[str]) -> float:
"""Compute average Levenshtein distance."""
N = len(y_true)
try:
lev = sum((edit_distance(y_true[i], y_pred[i]))
for i in range(N)) / N
return lev
except Exception as e:
logger.error(e)
def levenshtein_wordlen(y_true: List[str], y_pred: List[str]) -> float:
"""Compute average Levenshtein distance normalized by word length."""
N = len(y_true)
try:
lev = sum((edit_distance(y_true[i], y_pred[i])/len(y_true[i]))
for i in range(N)) / N
return lev
except Exception as e:
logger.error(e)
def compute_metrics(y_true: List[str], y_pred: List[str]) -> dict:
"""Compute different token-level and character-level metrics."""
res = {}
res['number_of_lemmata'] = len(y_true)
if y_pred: # prevent 0-division error
try:
res['accuracy'] = accuracy_score(y_true, y_pred)
except Exception as e:
logger.error(e)
try:
res['adj_recall'] = recall_score(y_true, y_pred, average='macro',
zero_division=0)
except Exception as e:
logger.error(e)
try:
res['adj_precision'] = precision_score(y_true, y_pred,
average='macro',
zero_division=0)
except Exception as e:
logger.error(e)
try:
res['adj_f1'] = f1_score(y_true, y_pred, average='macro',
zero_division=0)
except Exception as e:
logger.error(e)
try:
res['bal_accuracy'] = balanced_accuracy_score(y_true, y_pred,
adjusted=True)
except Exception as e:
logger.error(e)
res['log-levenshtein'] = log_levenshtein(y_true, y_pred)
res['log-levenshtein2'] = log_levenshtein(y_true, y_pred, sub=2)
res['levenshtein'] = levenshtein(y_true, y_pred)
res['levenshtein-wordlen'] = levenshtein_wordlen(y_true, y_pred)
# number of gold and predicted lemma types, ratio gold/predicted
res['true-pred-types'] = (len(set(y_true)), len(set(y_pred)),
len(set(y_true))/len(set(y_pred)))
return res
def metrics_by_pos(y_true: List[str], y_pred: List[str], z_upos: List[str],
z_xpos, UPOS: set = {'ADJ', 'ADV', 'NOUN', 'PROPN',
'VERB'}) -> dict:
"""Compute metrics overall, by uPoS and xPoS tag."""
res = {}
data = pd.DataFrame({'y_true': y_true, 'y_pred': y_pred, 'uPoS': z_upos,
'xPoS': z_xpos})
data_content = data[data['uPoS'].isin(UPOS)] # content words only
XPOS = {p[0] for p in pos_dict.items() if p[1] in UPOS}
# ignore POS tags other than content words for overall metrics
res['overall'] = compute_metrics(data_content.y_true.tolist(),
data_content.y_pred.tolist())
for p in UPOS: # metrics per uPoS tag
p_entries = data_content[data_content['uPoS'] == p]
if not p_entries.empty:
res[p] = compute_metrics(p_entries.y_true.tolist(),
p_entries.y_pred.tolist())
for p in XPOS: # metrics per xPoS tag
p_entries = data_content[data_content['xPoS'] == p]
if not p_entries.empty:
res[p] = compute_metrics(p_entries.y_true.tolist(),
p_entries.y_pred.tolist())
return res