-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataloder_iterative.py
328 lines (282 loc) · 15.9 KB
/
Dataloder_iterative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
#
# This material is based upon work supported by the Assistant Secretary of Defense for Research and
# Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions,
# findings, conclusions or recommendations expressed in this material are those of the author(s) and
# do not necessarily reflect the views of the Assistant Secretary of Defense for Research and
# Engineering.
#
# © 2017 Massachusetts Institute of Technology.
#
# MIT Proprietary, Subject to FAR52.227-11 Patent Rights - Ownership by the contractor (May 2014)
#
# The software/firmware is provided to you on an As-Is basis
#
# Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or
# 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are
# defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than
# as specifically authorized by the U.S. Government may violate any copyrights that exist in this
# work.
import logging
import numpy as np
import json
import pickle
import torch
import math
import h5py
import random
from random import choice
# from torch._C import dtype, float32
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
def invert_dict(d):
return {v: k for k, v in d.items()}
def load_vocab(path):
with open(path, 'r') as f:
vocab = json.load(f)
vocab['question_idx_to_token'] = invert_dict(vocab['question_token_to_idx'])
vocab['answer_idx_to_token'] = invert_dict(vocab['answer_token_to_idx'])
vocab['question_answer_idx_to_token'] = invert_dict(vocab['question_answer_token_to_idx'])
return vocab
class VideoQADataset(Dataset):
def __init__(self, answers, ans_candidates, ans_candidates_len, questions, questions_len, video_ids, q_ids,
app_feature_h5, app_feat_id_to_index, motion_feature_h5, motion_feat_id_to_index, object_feature_h5,object_feat_id_to_index,
caption_path = None, caption_max_num = None, split = None, video_names = None, question_type = None):
# convert data to tensor
self.all_answers = answers
self.all_questions = torch.LongTensor(np.asarray(questions))
self.all_questions_len = torch.LongTensor(np.asarray(questions_len))
self.all_video_ids = torch.LongTensor(np.asarray(video_ids))
self.all_video_names = video_names # dtype: str
self.all_q_ids = q_ids
self.app_feature_h5 = app_feature_h5
self.motion_feature_h5 = motion_feature_h5
self.object_feature_h5 = object_feature_h5
self.app_feat_id_to_index = app_feat_id_to_index
self.motion_feat_id_to_index = motion_feat_id_to_index
self.object_feat_id_to_index = object_feat_id_to_index
self.caption_path = caption_path
self.caption_max_num = caption_max_num
self.caption_pool = []
self.caption_pool_len = []
self.video_idx2_cap_gt = {}
self.split = split
self.sample_caption = {}
self.visualization = []
self.max_word = 40
self.different_dataset = question_type
count = 0
with open('data/msrvtt-qa/msrvtt-qa_val_questions.pt', 'rb') as f:
obj = pickle.load(f)
val_ids = obj['video_ids']
val_id = torch.LongTensor(np.asarray(val_ids))
if self.different_dataset == 'none':
# matching file : question_ID video_ID caption_ID
with open('data/msrvtt-qa/captions_pkl/full_caption_len.pkl','rb') as g:
cap_len = pickle.load(g)
with open(caption_path,'rb') as f:
self.caption = pickle.load(f) # 10000 {'video4118':[[],[]]}
for vid,feat in self.caption.items():
if 'msrvtt' in self.caption_path:
video_idx = int(vid)
elif 'msvd' in self.caption_path:
video_idx = int(vid[3:])
# if video_idx in self.all_video_ids or video_idx in val_id:
# continue
if video_idx not in self.all_video_ids:
continue
gt = []
max_word = self.max_word
for k, cap in enumerate(feat) :
self.visualization.append((video_idx, k))
if 'msvd' in self.caption_path:
if self.split == 'train':
self.sample_caption.setdefault(video_idx, []).append((cap, torch.clamp(torch.tensor(cap.shape[0]),max=max_word).data))
gt.append(count)
count += 1
padding = torch.zeros(max_word,cap.shape[1])
self.caption_pool_len.append(torch.clamp(torch.tensor(cap.shape[0]),max=max_word).data)
padding[:cap.shape[0],:] = torch.from_numpy(cap)[:max_word,:]
self.caption_pool.append(padding.unsqueeze(0))
else:
self.sample_caption.setdefault(video_idx, []).append((cap, cap_len[vid][k]))
gt.append(count)
count += 1
padding = torch.zeros(max_word,cap.shape[1])
self.caption_pool_len.append(cap_len[vid][k])
padding[:cap.shape[0],:] = torch.from_numpy(cap)[:max_word,:]
self.caption_pool.append(padding.unsqueeze(0))
self.video_idx2_cap_gt[str(video_idx)] = gt
self.caption_pool = torch.cat(self.caption_pool,dim=0) # num_cap 61 768/300
self.caption_pool_len = torch.tensor(self.caption_pool_len)
else: # T-gif
with open(caption_path,'r') as f:
self.caption = json.load(f) # {'video_name': [description,[sentence_index]]}
for vid, cap_index in self.caption.items():
if int(vid) not in self.all_video_ids:
continue
padding = F.pad(torch.tensor(cap_index), pad=(0,self.max_word-len(cap_index)))
if self.split == 'train':
self.sample_caption.setdefault(vid, []).append((padding, torch.clamp(torch.tensor(len(cap_index)),max=self.max_word).data))
self.caption_pool_len.append(torch.clamp(torch.tensor(len(cap_index)),max=self.max_word).data)
self.caption_pool.append(padding.unsqueeze(0))
self.video_idx2_cap_gt.setdefault(vid,[]).append(count)
count += 1
self.caption_pool = torch.cat(self.caption_pool, dim=0)
self.caption_pool_len = torch.tensor(self.caption_pool_len)
logging.info("length of caption pool:{}".format(self.caption_pool.size()))
logging.info("length of caption pool:{}".format(len(self.caption_pool)))
if not np.any(ans_candidates): # [0,0,0,0,0] -> False
self.question_type = 'openended'
else:
self.question_type = 'mulchoices'
self.all_ans_candidates = torch.LongTensor(np.asarray(ans_candidates))
self.all_ans_candidates_len = torch.LongTensor(np.asarray(ans_candidates_len))
def __getitem__(self, index):
answer = self.all_answers[index] if self.all_answers is not None else None
ans_candidates = torch.zeros(5)
ans_candidates_len = torch.zeros(5)
if self.question_type == 'mulchoices':
ans_candidates = self.all_ans_candidates[index]
ans_candidates_len = self.all_ans_candidates_len[index]
question = self.all_questions[index]
question_len = self.all_questions_len[index]
video_idx = self.all_video_ids[index].item()
video_name = self.all_video_names[index]
question_idx = self.all_q_ids[index]
##### random sample captions
if self.split == 'train':
if self.different_dataset == 'none':
sample_list = self.sample_caption[video_idx] #[(cap1,caplen1),(cap2,caplen2)]
sample_cap, sample_cap_len = random.sample(sample_list, 1)[0]
caption = torch.zeros(self.max_word,sample_cap.shape[1])
caption[:sample_cap.shape[0],:] = torch.from_numpy(sample_cap)[:self.max_word,:]
caption_len = torch.as_tensor(sample_cap_len)
else:
sample_cap, sample_cap_len = self.sample_caption[str(video_idx)][0] # ([index1,index2,...],length)
caption = sample_cap
caption_len = torch.as_tensor(sample_cap_len)
##### random sample captions
app_index = self.app_feat_id_to_index[str(video_idx)]
motion_index = self.motion_feat_id_to_index[str(video_idx)]
object_index = self.object_feat_id_to_index[str(video_idx)]
with h5py.File(self.app_feature_h5, 'r') as f_app:
appearance_feat = f_app['resnet_features'][app_index] # (8, 16, 2048)
# if 'msrvtt' in self.app_feature_h5:
# Subtraction_frame = np.linspace(0, 16, num=8, endpoint=False, dtype=int)
# appearance_feat = appearance_feat[:, Subtraction_frame, :]
with h5py.File(self.motion_feature_h5, 'r') as f_motion:
motion_feat = f_motion['resnext_features'][motion_index] # (8, 2048)
with h5py.File(self.object_feature_h5,'r') as f_object:
object_feat = f_object['feat'][object_index] # (128,10,2048)
appearance_feat = torch.from_numpy(appearance_feat)
motion_feat = torch.from_numpy(motion_feat)
object_feat = torch.from_numpy(object_feat).to(torch.float32)
if self.split == 'train':
return (
video_idx, question_idx, answer, ans_candidates, ans_candidates_len, appearance_feat, motion_feat, object_feat, question,
question_len, caption, caption_len)
else:
return (
video_idx, question_idx, answer, ans_candidates, ans_candidates_len, appearance_feat, motion_feat, object_feat, question,
question_len)
def __len__(self):
return len(self.all_questions)
class VideoQADataLoader(DataLoader):
def __init__(self, **kwargs):
vocab_json_path = str(kwargs.pop('vocab_json'))
print('loading vocab from %s' % (vocab_json_path))
vocab = load_vocab(vocab_json_path)
##################### load caption features #####################
caption_path = None
dataset_name = kwargs.pop('name')
split = kwargs.pop('split')
caption_max_num = kwargs.pop('caption_max_num')
#if split == 'train':
if dataset_name == 'msrvtt-qa':
caption_path = 'data/msrvtt-qa/captions_pkl/full_caption_features.pkl'
#caption_path = 'data/msrvtt-qa/data/MSRVTT/structured-symlinks/aggregated_text_feats/w2v_MSRVTT.pickle'
if dataset_name == 'msvd-qa':
caption_path = 'data/msvd-qa/data/MSVD/structured-symlinks/aggregated_text_feats/openai-caption-full.pkl'
if dataset_name == 'tgif-qa':
caption_path = 'data/tgif-qa/tgif-caption/tgif_video_cap_ids.json'
question_pt_path = str(kwargs.pop('question_pt'))
print('loading questions from %s' % (question_pt_path))
question_type = kwargs.pop('question_type')
with open(question_pt_path, 'rb') as f:
obj = pickle.load(f)
questions = obj['questions']
questions_len = obj['questions_len']
video_ids = obj['video_ids']
video_names = obj['video_names']
q_ids = obj['question_id']
answers = obj['answers']
glove_matrix = obj['glove']
ans_candidates = np.zeros(5)
ans_candidates_len = np.zeros(5)
if question_type in ['action', 'transition']:
ans_candidates = obj['ans_candidates']
ans_candidates_len = obj['ans_candidates_len']
if 'train_num' in kwargs:
trained_num = kwargs.pop('train_num')
if trained_num > 0:
questions = questions[:trained_num]
questions_len = questions_len[:trained_num]
video_ids = video_ids[:trained_num]
q_ids = q_ids[:trained_num]
answers = answers[:trained_num]
if question_type in ['action', 'transition']:
ans_candidates = ans_candidates[:trained_num]
ans_candidates_len = ans_candidates_len[:trained_num]
if 'val_num' in kwargs:
val_num = kwargs.pop('val_num')
if val_num > 0:
questions = questions[:val_num]
questions_len = questions_len[:val_num]
video_ids = video_ids[:val_num]
q_ids = q_ids[:val_num]
answers = answers[:val_num]
if question_type in ['action', 'transition']:
ans_candidates = ans_candidates[:val_num]
ans_candidates_len = ans_candidates_len[:val_num]
if 'test_num' in kwargs:
test_num = kwargs.pop('test_num')
if test_num > 0:
questions = questions[:test_num]
questions_len = questions_len[:test_num]
video_ids = video_ids[:test_num]
q_ids = q_ids[:test_num]
answers = answers[:test_num]
if question_type in ['action', 'transition']:
ans_candidates = ans_candidates[:test_num]
ans_candidates_len = ans_candidates_len[:test_num]
print('loading appearance feature from %s' % (kwargs['appearance_feat']))
with h5py.File(kwargs['appearance_feat'], 'r') as app_features_file:
app_video_ids = app_features_file['ids'][()]
app_feat_id_to_index = {str(id): i for i, id in enumerate(app_video_ids)}
print('loading motion feature from %s' % (kwargs['motion_feat']))
with h5py.File(kwargs['motion_feat'], 'r') as motion_features_file:
motion_video_ids = motion_features_file['ids'][()]
motion_feat_id_to_index = {str(id): i for i, id in enumerate(motion_video_ids)}
print('loading object feature from %s' % (kwargs['object_feat']))
with h5py.File(kwargs['object_feat'], 'r') as object_features_file:
object_video_ids = object_features_file['video_ids'][()]
object_feat_id_to_index = {str(id): i for i, id in enumerate(object_video_ids)}
self.app_feature_h5 = kwargs.pop('appearance_feat')
self.motion_feature_h5 = kwargs.pop('motion_feat')
self.object_feature_h5 = kwargs.pop('object_feat')
self.dataset = VideoQADataset(answers, ans_candidates, ans_candidates_len,
questions, questions_len,video_ids, q_ids,
self.app_feature_h5, app_feat_id_to_index,
self.motion_feature_h5, motion_feat_id_to_index,
self.object_feature_h5,object_feat_id_to_index,
caption_path, caption_max_num, split = split,
video_names = video_names,
question_type = question_type,
)
self.vocab = vocab
self.batch_size = kwargs['batch_size']
self.glove_matrix = glove_matrix
super().__init__(self.dataset, **kwargs)
def __len__(self):
return math.ceil(len(self.dataset) / self.batch_size)