-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
141 lines (126 loc) · 4.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Train an agent using Proximal Policy Optimization from Stable Baselines 3
Taken from: https://github.com/Farama-Foundation/stable-retro/blob/master/retro/examples/ppo.py
"""
import argparse
from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import CallbackList
from stable_baselines3.common.vec_env import (
SubprocVecEnv,
VecFrameStack,
VecTransposeImage,
)
from wrappers.hotwheels import HotWheelsWrapper
from evaluation.evalCallback import EvalCallback
import wandb
from wandb.integration.sb3 import WandbCallback
from utils import Config, make_retro
def main(config: Config) -> None:
def make_env():
env = make_retro(game=config.game, state=config.state)
env = HotWheelsWrapper(
env,
action_space=config.action_space,
frame_skip=config.frame_skip,
frame_skip_stickprob=config.frame_skip_prob,
terminate_on_crash=config.terminate_on_crash,
terminate_on_wall_crash=config.terminate_on_wall_crash,
crash_reward=config.crash_reward,
wall_crash_reward=config.wall_crash_reward,
use_deepmind_wrapper=True,
max_episode_steps=5_100
)
return env
venv = VecTransposeImage(
VecFrameStack(SubprocVecEnv([make_env] * config.num_envs), n_stack=config.frame_stack)
)
if config.training_states:
# Need to change state AFTER adding SubProcVec because
# retro will throw "1 Emulator per process only" exception
# if applied before
for indx, t_state in enumerate(config.training_states):
_ = venv.env_method(
method_name="load_state", statename=f"{t_state}.state", indices=indx
)
_ = venv.env_method(method_name="reset_emulator_data", indices=indx)
_ = venv.reset()
# setup wandb monitoring
_run = wandb.init(
project="sb3-hotwheels",
config=config,
sync_tensorboard=True, # auto-upload sb3's tensorboard metrics
resume=True if config.resume else None,
id=config.run_id if config.run_id else None,
tags=[config.state],
dir="./logs/wandb/",
)
if config.resume:
model = PPO.load(
path=config.model_load_path,
env=venv,
# Needed because sometimes sb3 cant find the
# obs and action space. Seen in colab on 8/21/23
custom_objects={
"observation_space": venv.observation_space,
"action_space": venv.action_space,
},
)
else:
model = PPO(
policy=config.policy,
env=venv,
learning_rate=lambda f: f * 2.5e-4,
n_steps=config.n_steps,
batch_size=config.batch_size,
n_epochs=config.n_epochs,
gamma=config.gamma,
gae_lambda=config.gae_lambda,
clip_range=config.clip_range,
ent_coef=config.ent_coef,
verbose=1,
tensorboard_log=f"./logs/tf/{_run.name}",
)
# setup callbacks
_model_save_path = (
config.gdrive_model_save_path
if config.in_colab
else config.model_save_path
)
wandb_callback = WandbCallback(
#gradient_save_freq=50_000,
model_save_path=_model_save_path + _run.name,
model_save_freq=config.model_save_freq,
verbose=1,
)
_best_model_save_path = (
config.gdrive_best_model_save_path
if config.in_colab
else config.best_model_save_path
)
eval_callback = EvalCallback(
venv,
best_model_save_path=_best_model_save_path + _run.name,
log_path=f"./logs/eval/{_run.name}",
eval_freq=config.eval_freq,
eval_statename=config.evaluation_statename,
deterministic=True,
render=config.render_eval,
)
_callback_list = CallbackList([eval_callback, wandb_callback])
try:
model.learn(
total_timesteps=config.total_steps,
log_interval=1,
callback=_callback_list,
reset_num_timesteps=False if config.resume else True,
)
finally:
venv.close()
_run.finish()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="Filepath to config yaml file", required=False)
args = parser.parse_args()
_config = Config(args.config)
print(_config)
main(_config)