-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
74 lines (64 loc) · 2.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import config
import torch.backends.cudnn as cudnn
import torch
from seada.adversarial_vqa import AdversarialAttackVQA
import warnings
warnings.filterwarnings('ignore')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('name', nargs='*')
parser.add_argument('--attack_only', action='store_true')
parser.add_argument('--generate_adv_example', action='store_true')
parser.add_argument('--attacked_checkpoint', type=str, help='must be announced when attack only')
parser.add_argument('--attack_al', type=str, default='ifgsm', help='attack algorithm')
parser.add_argument('--checkpoint', type=str)
parser.add_argument('--resume', type=str)
parser.add_argument('--attack_mode', default='v', choices=['v', 'q', 'vq', 'no'])
parser.add_argument('--advtrain', action='store_true')
parser.add_argument('--vqacp', action='store_true')
parser.add_argument('--advtrain_data', default='train', choices=['train', 'trainval'])
parser.add_argument('--eval_advtrain', action='store_true')
parser.add_argument('--test_advtrain', action='store_true')
parser.add_argument('--advloss_w', type=int, default=1)
parser.add_argument('--samples_frac', type=float, default=1)
parser.add_argument('--adv_delay', type=int, default=10)
parser.add_argument('--adv_end', type=int, default=15)
parser.add_argument('--epsilon', type=float, default=0.3)
parser.add_argument('--alpha',type=float, default=0.5)
parser.add_argument('--iteration', type=int, default=2)
parser.add_argument('--lr_decay', type=int, default=15)
parser.add_argument('--topk', type=int, default=1)
parser.add_argument('--fliprate', type=float, default=0)
parser.add_argument('--paraphrase_data', type=str, default='train', choices=['train', 'val', 'test'])
parser.add_argument('--describe', type=str, default='describe your setting')
args = parser.parse_args()
if args.attack_only:
args.generate_adv_example = True
if args.eval_advtrain or args.advtrain:
if args.attacked_checkpoint:
args.generate_adv_example = True
if args.test_advtrain:
args.attacked_checkpoint = False
args.generate_adv_example = False
print('-' * 50)
print(args)
config.print_param()
# set mannual seed
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
# ----------Tasks-------------------
attackvqa = AdversarialAttackVQA(args)
if args.attack_only:
attackvqa.attack(attackvqa.val_loader)
if args.advtrain:
attackvqa.advsarial_training()
if args.eval_advtrain:
#r = attackvqa.evaluate(attackvqa.val_loader)
# you can save result by calling:
attackvqa.save_result_json(attackvqa.val_loader)
if args.test_advtrain:
# r = attackvqa.evaluate(attackvqa.val_loader, has_answers=False)
attackvqa.save_result_json(attackvqa.val_loader, has_answers=False)
if __name__ == '__main__':
main()