-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrefactored_hyperparam_search.py
914 lines (791 loc) · 38.3 KB
/
refactored_hyperparam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
import numpy as np
import os, sys
import importlib
from tqdm.autonotebook import tqdm, trange
import pandas as pd
import json
import itertools
import skopt
from FewShotTestHandler import FewShotTestHandler, optimize_hyperparameters, find_hyperparameters, test_already_stored, filter_test_results
from dataset import DatasetHandler
from similarity_metrics import Similarity
from plotting_utils import plot
def get_results(VLM_ARG, CLASSIFIER_ARG, dataset_name=["smsm", "kinetics_100"],
num_shots = [1, 2, 4, 8, 16], num_episodes = [4]):
SEARCH_METHOD = "grid" # grid, gp, forest, random
N_HYPERPARAM_SEARCH_CALLS = 16 # Max number of hyperparam values tested for each dataset/n_shot combo
USE_VAL_TUNING = True
'''
Test Setup
'''
# Parameters which will be iterated over.
# Each product will receive individual hyperparam optimization over vlm and classifier params
test_params_dict = {}
# Dataset Params - dataset.____ keys are passed into DatasetHandler constructor
test_params_dict["dataset.name"] = dataset_name
test_params_dict["dataset.split_type"] = ["video"]
# Few-Shot Test Params - test.____ keys are passed into few-shot test call
test_params_dict["test.n_way"] = [None] # None value gets manually converted to the max size for each dataset
test_params_dict["test.n_support"] = num_shots
test_params_dict["test.n_query"] = [None]
test_params_dict["test.n_episodes"] = num_episodes # Bring to 50
'''
VLM Setup
'''
fixed_vlm_kwargs = {} # VLM keyword parameters to pass to constructor
vlm_hyperparams = [] # Hyperparameter spaces in skopt format
if VLM_ARG == "clip":
from CLIP.CLIPVLM import ClipVLM as VLM
fixed_vlm_kwargs["num_frames"] = 10
elif VLM_ARG == "miles":
from MILES.wrapper import MILES_SimilarityVLM as VLM
elif VLM_ARG == "videoclip":
from video_clip.video_clip import VideoClipVLM as VLM
fixed_vlm_kwargs["num_seconds"] = 4
fixed_vlm_kwargs["sample_strat"] = "spread"
fixed_vlm_kwargs["use_cuda"] = True
elif VLM_ARG == "univl":
from UNIVL.wrapper import UniVL_SimilarityVLM as VLM
elif VLM_ARG == "vttwins":
from VTTWINS.wrapper import VTTWINS_SimilarityVLM as VLM
else:
raise NotImplementedError
'''
Classifier Setup
'''
fixed_classifier_kwargs = {} # Classifier keyword parameters to pass to constructor
classifier_hyperparams = [] # Hyperparameter spaces in skopt format
if CLASSIFIER_ARG == "vl_proto":
from classifier import WeightedTextFewShotClassifier as Classifier
classifier_hyperparams.append(skopt.space.Real(
1e-2, 1000,
name="text_weight", prior="log-uniform"
))
elif CLASSIFIER_ARG == "hard_prompt_weighted_text":
from classifier import HardPromptFewShotClassifier as Classifier
elif CLASSIFIER_ARG == "nearest_neighbor":
from classifier import NearestNeighborFewShotClassifier as Classifier
classifier_hyperparams.append(skopt.space.Integer(
1, 32,
name="neighbor_count", prior="log-uniform"
))
classifier_hyperparams.append(skopt.space.Categorical(
["uniform", "distance"],
name="neighbor_weights"
))
elif CLASSIFIER_ARG == "gaussian_proto":
from classifier import GaussianFewShotClassifier as Classifier
classifier_hyperparams.append(skopt.space.Real(
1e-2, 1000,
name="text_weight", prior="log-uniform"
))
classifier_hyperparams.append(skopt.space.Integer(
0, 100,
name="prior_count", prior="uniform"
))
classifier_hyperparams.append(skopt.space.Real(
1, 100,
name="prior_var", prior="log-uniform"
))
elif CLASSIFIER_ARG == "subvideo":
from classifier import SubVideoAverageFewShotClassifier as Classifier
elif CLASSIFIER_ARG == "tip_adapter":
from classifier import TipAdapterFewShotClassifier as Classifier
fixed_classifier_kwargs["finetune_epochs"] = 20
fixed_classifier_kwargs["random_augment"] = False
classifier_hyperparams.append(skopt.space.Categorical(
[1e0, 1e1, 1e2, 1e3],
name="alpha"
))
classifier_hyperparams.append(skopt.space.Categorical(
[5.5],
name="beta"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1e-4, 4e-4, 1e-3, 4e-3],
name="finetune_lr"
))
elif CLASSIFIER_ARG == "smsm_object_oracle":
from classifier.smsm_object_oracle import SmsmObjectOracleFewShotClassifier as Classifier
elif CLASSIFIER_ARG == "coop":
from classifier.coop import CoopFewShotClassifier as Classifier
fixed_classifier_kwargs["random_augment"] = False
fixed_classifier_kwargs["batch_size"] = 8
fixed_classifier_kwargs["optimizer"] = "sgd"
fixed_classifier_kwargs["epochs"] = 50
"""
epochs: [20, 30, 50]
lr: [6.25e-5, 5e-4, 2e-3, 4e-3]
bs: [8]
ctx_len: [16]
"""
classifier_hyperparams.append(skopt.space.Categorical(
[6.25e-5, 5e-4, 2e-3, 4e-3],
name="lr"
))
'''
classifier_hyperparams.append(skopt.space.Real(
1e-4, 1e-2,
name="lr", prior="log-uniform"
))
'''
'''
classifier_hyperparams.append(skopt.space.Categorical(
[5, 10, 20],
name="epochs"
))
classifier_hyperparams.append(skopt.space.Categorical(
[True, False],
name="random_augment"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1, 8],
name="batch_size", prior=[0.1, 0.9]
))
'''
elif CLASSIFIER_ARG == "cona":
from classifier.cona import CoNaFewShotClassifier as Classifier
fixed_classifier_kwargs["random_augment"] = False
fixed_classifier_kwargs["batch_size"] = 1
fixed_classifier_kwargs["optimizer"] = "sgd"
fixed_classifier_kwargs["epochs"] = 20 # 10 for 1,2,4 shots
# First change: 10 --> 20 epochs, lr = [1e-4, 1e-3] --> [2e-5, 2e-4], nctx 16 --> 8
# ORIG_COOP_BATCH_SIZE = 32
# ORIG_COOP_LR = 2e-3
# equiv_lr = ORIG_COOP_LR / ORIG_COOP_BATCH_SIZE * fixed_classifier_kwargs["batch_size"]
# classifier_hyperparams.append(skopt.space.Categorical(
# [0.5 * equiv_lr, equiv_lr, 2 * equiv_lr, 8 * equiv_lr],
# name="lr"
# ))
classifier_hyperparams.append(skopt.space.Categorical(
[1e-3],
name="lr"
))
classifier_hyperparams.append(skopt.space.Categorical(
[5], # Was 1, 5 originally
name="name_regularization"
))
classifier_hyperparams.append(skopt.space.Categorical(
[16],
name="context_len"
))
'''
classifier_hyperparams.append(skopt.space.Categorical(
[5, 10, 20],
name="epochs"
))
classifier_hyperparams.append(skopt.space.Categorical(
[True, False],
name="random_augment"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1, 8],
name="batch_size", prior=[0.1, 0.9]
))
'''
else:
raise ValueError("Unrecognized classifier arg")
VAL_RESULTS_CSV = f"hyperparam_search_val.{Classifier.__name__}.{VLM.__name__}.csv"
TEST_RESULTS_CSV = f"hyperparam_search_test.{Classifier.__name__}.{VLM.__name__}.csv"
val_run_handler = FewShotTestHandler(VAL_RESULTS_CSV)
test_run_handler = FewShotTestHandler(TEST_RESULTS_CSV)
'''
Hyperparameter Search
'''
# Combine vlm and classifier hyperparams
for vlm_hyper in vlm_hyperparams:
vlm_hyper.name = f"vlm.{vlm_hyper.name}"
for classifier_hyper in classifier_hyperparams:
classifier_hyper.name = f"classifier.{classifier_hyper.name}"
hyperparam_space = vlm_hyperparams + classifier_hyperparams
train_dataset = None
val_dataset = None
test_dataset = None
cur_dataset_kwargs = None
global vlm, cur_vlm_kwargs
vlm = None
cur_vlm_kwargs = None
pbar = tqdm(list(itertools.product(*test_params_dict.values())))
for test_params in pbar:
test_params = dict(zip(test_params_dict.keys(), test_params))
pbar.set_postfix(test_params)
dataset_kwargs = {key[8:]: val for key, val in test_params.items() if key.startswith("dataset.")}
test_kwargs = {key[5:]: val for key, val in test_params.items() if key.startswith("test.")}
# Update dataset
if val_dataset is None or cur_dataset_kwargs != dataset_kwargs:
train_dataset = DatasetHandler(**dataset_kwargs, split="train")
val_dataset = DatasetHandler(**dataset_kwargs, split="val")
test_dataset = DatasetHandler(**dataset_kwargs, split="test")
cur_dataset_kwargs = dataset_kwargs
# Convert n_way = None into n_way = max-ways
if test_kwargs["n_way"] is None:
test_kwargs["n_way"] = train_dataset.category_count()
# Skip if matching final run already exists in test results csv
allow_multiple_runs = True
if not allow_multiple_runs:
matching_test_run_results = filter_test_results(
test_run_handler.results,
dict(
test_kwargs,
query_dataset=test_dataset.id(),
support_dataset=train_dataset.id(),
val_tuning_dataset=val_dataset.id() if USE_VAL_TUNING else None,
vlm_class=VLM.__name__,
**{f"vlm.{key}": val for key, val in fixed_vlm_kwargs.items()},
classifier_class=Classifier.__name__,
**{f"classifier.{key}": val for key, val in fixed_classifier_kwargs.items()}
)
)
if len(matching_test_run_results):
print(f"Skipping hyperparam search which already has test results.")
print(f"Dataset: {test_dataset.id()}")
print(f"Test kwargs:\n{json.dumps(test_kwargs, indent=2)}")
continue
'''
Hyperparameter search in given dataset split
'''
# skopt loss function
@skopt.utils.use_named_args(hyperparam_space)
def val_neg_accuracy(**hyperparam_kwargs):
hyperparam_kwargs = dict(hyperparam_kwargs)
vlm_kwargs = {key[4:]: val for key, val in hyperparam_kwargs.items() if key.startswith("vlm.")}
classifier_kwargs = {key[11:]: val for key, val in hyperparam_kwargs.items() if key.startswith("classifier.")}
# Update vlm if necessary (allow reuse if unchanging)
global vlm, cur_vlm_kwargs
if vlm is None or cur_vlm_kwargs != vlm_kwargs:
vlm = VLM(**fixed_vlm_kwargs, **vlm_kwargs)
cur_vlm_kwargs = vlm_kwargs
# Update classifier
classifier = Classifier(vlm, **fixed_classifier_kwargs, **classifier_kwargs)
accuracy = val_run_handler.run_few_shot_test(classifier, val_dataset, train_dataset, **test_kwargs, val_tuning_dataset=val_dataset if USE_VAL_TUNING else None)
return -1 * accuracy
# Callback function for progress bar
skopt_pbar = None
def skopt_callback(current_skopt_results):
best_run_ind = np.argmin(current_skopt_results.func_vals)
postfix_dict = {
"best_acc": round(-1 * current_skopt_results.func_vals[best_run_ind], 5)
}
for i, param_space in enumerate(hyperparam_space):
key = param_space.name
val = current_skopt_results.x_iters[best_run_ind][i]
if isinstance(val, float):
val = round(val, 5)
postfix_dict[key] = val
skopt_pbar.update(1)
skopt_pbar.set_postfix(postfix_dict)
# Find any previous val runs which shall be fed into skopt hyperparam search alg
# Possible since hyperparameter spaces are named to match names in results csvs, which cover all vlm and classifier parameters
# Only used for skopt search methods
prev_val_run_results = filter_test_results(
val_run_handler.results,
dict(
test_kwargs,
query_dataset=val_dataset.id(),
support_dataset=train_dataset.id(),
val_tuning_dataset=val_dataset.id() if USE_VAL_TUNING else None,
vlm_class=VLM.__name__,
**{f"vlm.{key}": val for key, val in fixed_vlm_kwargs.items()},
classifier_class=Classifier.__name__,
**{f"classifier.{key}": val for key, val in fixed_classifier_kwargs.items()}
)
).reset_index(drop=True)
if len(prev_val_run_results):
x0, y0 = [], []
for i in range(len(prev_val_run_results)):
x0.append(tuple(prev_val_run_results.loc[i, hyper.name] for hyper in hyperparam_space))
y0.append(-1 * prev_val_run_results.loc[i, "accuracy"])
else:
x0, y0 = None, None
# Run skopt process
skopt_pbar = tqdm(total=N_HYPERPARAM_SEARCH_CALLS)
if SEARCH_METHOD == "gp":
skopt_results = skopt.gp_minimize(val_neg_accuracy, hyperparam_space, n_calls=N_HYPERPARAM_SEARCH_CALLS, callback=skopt_callback, x0=x0, y0=y0)
elif SEARCH_METHOD == "forest":
skopt_results = skopt.forest_minimize(val_neg_accuracy, hyperparam_space, n_calls=N_HYPERPARAM_SEARCH_CALLS, callback=skopt_callback, x0=x0, y0=y0)
elif SEARCH_METHOD == "random":
for _ in range(N_HYPERPARAM_SEARCH_CALLS):
val_neg_accuracy([hyper.rvs(1)[0] for hyper in hyperparam_space])
skopt_pbar.update(1)
elif SEARCH_METHOD == "grid":
categorical_hyperparams = [hyper for hyper in hyperparam_space if type(hyper) is skopt.space.space.Categorical]
other_hyperparams = [hyper for hyper in hyperparam_space if type(hyper) is not skopt.space.space.Categorical]
# Grid must iterate over all selected categories
runs_per_category_choice = N_HYPERPARAM_SEARCH_CALLS
for hyper in categorical_hyperparams:
runs_per_category_choice = runs_per_category_choice // len(hyper.categories)
if runs_per_category_choice == 0:
raise ValueError("Too many categorical hyperparameters to iterate over all choices without exceeding {} runs.".format(N_HYPERPARAM_SEARCH_CALLS))
if len(other_hyperparams) == 0:
discretized_hyperparam_space = [hyper.categories for hyper in hyperparam_space]
else:
samples_per_cont_hyper = int(np.power(runs_per_category_choice, 1 / len(other_hyperparams)))
if samples_per_cont_hyper == 0:
raise ValueError(f"Too many hyperparameters to iterate over all categories and still choose multiple values per continuous space, without exceeding {N_HYPERPARAM_SEARCH_CALLS} runs.")
discretized_hyperparam_space = []
for hyper in hyperparam_space:
if type(hyper) is skopt.space.space.Categorical:
discretized_hyperparam_space.append(hyper.categories)
elif type(hyper) in [skopt.space.space.Real, skopt.space.space.Integer]:
if hyper.prior == "log-uniform":
hyper_samples = np.logspace(np.log10(hyper.low), np.log10(hyper.high), num=samples_per_cont_hyper, endpoint=True)
else:
hyper_samples = np.linspace(hyper.low, hyper.high, num=samples_per_cont_hyper, endpoint=True)
if type(hyper) is skopt.space.space.Integer:
hyper_samples = np.round(hyper_samples)
discretized_hyperparam_space.append(hyper_samples)
else:
raise NotImplementedError
hyperparam_value_iter = list(itertools.product(*discretized_hyperparam_space))
skopt_pbar.total = len(hyperparam_value_iter)
for i, hyperparam_values in enumerate(hyperparam_value_iter):
val_neg_accuracy(hyperparam_values)
skopt_pbar.update(1)
else:
raise NotImplementedError
'''
Test run with best hyperparams
'''
# Select best hyperparameter values from val split
best_hyperparam_values = find_hyperparameters(
val_run_handler.results,
hyperparam_cols=[col for col in val_run_handler.results if col.startswith("classifier.") or col.startswith("vlm.")]
)
matching_hyperparam_values = filter_test_results(
best_hyperparam_values,
dict(
test_kwargs,
query_dataset=val_dataset.id(),
support_dataset=train_dataset.id(),
val_tuning_dataset=val_dataset.id() if USE_VAL_TUNING else None,
vlm_class=VLM.__name__,
**{f"vlm.{key}": val for key, val in fixed_vlm_kwargs.items()},
classifier_class=Classifier.__name__,
**{f"classifier.{key}": val for key, val in fixed_classifier_kwargs.items()}
)
).reset_index(drop=True)
vlm_kwargs = {}
classifier_kwargs = {}
for col in matching_hyperparam_values.columns:
if col.startswith("vlm."):
if col[4:] in fixed_vlm_kwargs.keys():
continue
val = matching_hyperparam_values.loc[0, col]
# NaN values indicate they aren't applicable for this vlm/classifier
if not pd.isna(val):
# Replace np types with native python types
if type(val).__module__ == np.__name__:
val = val.item()
vlm_kwargs[col[4:]] = val
if col.startswith("classifier."):
if col[11:] in fixed_classifier_kwargs.keys():
continue
val = matching_hyperparam_values.loc[0, col]
# NaN values indicate they aren't applicable for this vlm/classifier
if not pd.isna(val):
# Replace np types with native python types
if type(val).__module__ == np.__name__:
val = val.item()
if col != "classifier.metric":
classifier_kwargs[col[11:]] = val
else:
classifier_kwargs[col[11:]] = Similarity[val]
# Update vlm if necessary (allow reuse if unchanging)
if vlm is None or cur_vlm_kwargs != vlm_kwargs:
vlm = VLM(**fixed_vlm_kwargs, **vlm_kwargs)
cur_vlm_kwargs = vlm_kwargs
# Update classifier
classifier = Classifier(vlm, **fixed_classifier_kwargs, **classifier_kwargs)
test_acc = test_run_handler.run_few_shot_test(classifier, test_dataset, train_dataset, **test_kwargs, val_tuning_dataset=val_dataset if USE_VAL_TUNING else None)
print(f"Test Run Complete!")
print(f"Accuracy: {test_acc}")
print(f"Dataset: {test_dataset.id()}")
print(f"Test: {json.dumps(test_kwargs, indent=2)}")
print(f"VLM: {json.dumps(vlm_kwargs, indent=2)}")
print(f"Classifier: {json.dumps(classifier_kwargs, indent=2)}")
def get_fs_results(VLM_ARG, CLASSIFIER_ARG, dataset_name=["smsm", "kinetics_100"],
num_shots = [5], num_episodes = [20]):
N_HYPERPARAM_SEARCH_CALLS = 16 # Max number of hyperparam values tested for each dataset/n_shot combo
SEARCH_METHOD = "grid" # gp, forest, random
USE_VAL_TUNING = False
'''
Test Setup
'''
# Parameters which will be iterated over.
# Each product will receive individual hyperparam optimization over vlm and classifier params
test_params_dict = {}
# Dataset Params - dataset.____ keys are passed into DatasetHandler constructor
test_params_dict["dataset.name"] = dataset_name
test_params_dict["dataset.split_type"] = ["class"]
# Few-Shot Test Params - test.____ keys are passed into few-shot test call
test_params_dict["test.n_way"] = [5] # None value gets manually converted to the max size for each dataset
test_params_dict["test.n_support"] = [5]
test_params_dict["test.n_query"] = [None]
test_params_dict["test.n_episodes"] = num_episodes
'''
VLM Setup
'''
fixed_vlm_kwargs = {} # VLM keyword parameters to pass to constructor
vlm_hyperparams = [] # Hyperparameter spaces in skopt format
if VLM_ARG == "clip":
from CLIP.CLIPVLM import ClipVLM as VLM
fixed_vlm_kwargs["num_frames"] = 10
elif VLM_ARG == "miles":
from MILES.wrapper import MILES_SimilarityVLM as VLM
elif VLM_ARG == "videoclip":
from video_clip.video_clip import VideoClipVLM as VLM
fixed_vlm_kwargs["num_seconds"] = 4
fixed_vlm_kwargs["sample_strat"] = "spread"
fixed_vlm_kwargs["use_cuda"] = True
elif VLM_ARG == "univl":
from UNIVL.wrapper import UniVL_SimilarityVLM as VLM
elif VLM_ARG == "vttwins":
from VTTWINS.wrapper import VTTWINS_SimilarityVLM as VLM
else:
raise NotImplementedError
'''
Classifier Setup
'''
fixed_classifier_kwargs = {} # Classifier keyword parameters to pass to constructor
classifier_hyperparams = [] # Hyperparameter spaces in skopt format
if CLASSIFIER_ARG == "vl_proto":
from classifier import WeightedTextFewShotClassifier as Classifier
classifier_hyperparams.append(skopt.space.Real(
1e-2, 1000,
name="text_weight", prior="log-uniform"
))
elif CLASSIFIER_ARG == "hard_prompt_weighted_text":
from classifier import HardPromptFewShotClassifier as Classifier
elif CLASSIFIER_ARG == "nearest_neighbor":
from classifier import NearestNeighborFewShotClassifier as Classifier
classifier_hyperparams.append(skopt.space.Integer(
1, 32,
name="neighbor_count", prior="log-uniform"
))
classifier_hyperparams.append(skopt.space.Categorical(
["uniform", "distance"],
name="neighbor_weights"
))
elif CLASSIFIER_ARG == "gaussian_proto":
from classifier import GaussianFewShotClassifier as Classifier
classifier_hyperparams.append(skopt.space.Real(
1e-2, 1000,
name="text_weight", prior="log-uniform"
))
classifier_hyperparams.append(skopt.space.Integer(
0, 100,
name="prior_count", prior="uniform"
))
classifier_hyperparams.append(skopt.space.Real(
1, 100,
name="prior_var", prior="log-uniform"
))
elif CLASSIFIER_ARG == "subvideo":
from classifier import SubVideoAverageFewShotClassifier as Classifier
elif CLASSIFIER_ARG == "tip_adapter":
from classifier import TipAdapterFewShotClassifier as Classifier
fixed_classifier_kwargs["finetune_epochs"] = 20
fixed_classifier_kwargs["random_augment"] = False
classifier_hyperparams.append(skopt.space.Categorical(
[1e0, 1e1, 1e2, 1e3],
name="alpha"
))
classifier_hyperparams.append(skopt.space.Categorical(
[5.5],
name="beta"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1e-4, 4e-4, 1e-3, 4e-3],
name="finetune_lr"
))
elif CLASSIFIER_ARG == "smsm_object_oracle":
from classifier.smsm_object_oracle import SmsmObjectOracleFewShotClassifier as Classifier
elif CLASSIFIER_ARG == "coop":
from classifier.coop import CoopFewShotClassifier as Classifier
fixed_classifier_kwargs["random_augment"] = False
fixed_classifier_kwargs["batch_size"] = 1
fixed_classifier_kwargs["optimizer"] = "sgd"
fixed_classifier_kwargs["epochs"] = 20
ORIG_COOP_BATCH_SIZE = 32
ORIG_COOP_LR = 1e-4
equiv_lr = ORIG_COOP_LR #/ ORIG_COOP_BATCH_SIZE * fixed_classifier_kwargs["batch_size"]
#classifier_hyperparams.append(skopt.space.Categorical(
# [0.5 * equiv_lr, equiv_lr, 2 * equiv_lr, 4 * equiv_lr, 8 * equiv_lr],
# name="lr"
#))
classifier_hyperparams.append(skopt.space.Categorical(
[equiv_lr],
name="lr"
))
# classifier_hyperparams.append(skopt.space.Categorical(
# [equiv_lr * 1e-3],
# name="warmup_lr"
# ))
'''
classifier_hyperparams.append(skopt.space.Real(
1e-4, 1e-2,
name="lr", prior="log-uniform"
))
'''
'''
classifier_hyperparams.append(skopt.space.Categorical(
[5, 10, 20],
name="epochs"
))
classifier_hyperparams.append(skopt.space.Categorical(
[True, False],
name="random_augment"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1, 8],
name="batch_size", prior=[0.1, 0.9]
))
'''
elif CLASSIFIER_ARG == "cona":
from classifier.cona import CoNaFewShotClassifier as Classifier
fixed_classifier_kwargs["random_augment"] = False
fixed_classifier_kwargs["batch_size"] = 8
fixed_classifier_kwargs["optimizer"] = "sgd"
fixed_classifier_kwargs["epochs"] = 50
ORIG_COOP_BATCH_SIZE = 32
ORIG_COOP_LR = 2e-3
equiv_lr = ORIG_COOP_LR / ORIG_COOP_BATCH_SIZE * fixed_classifier_kwargs["batch_size"]
classifier_hyperparams.append(skopt.space.Categorical(
[0.5 * equiv_lr, equiv_lr, 2 * equiv_lr, 8 * equiv_lr],
name="lr"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1e4, 1e6, 1e8],
name="name_regularization"
))
'''
classifier_hyperparams.append(skopt.space.Categorical(
[5, 10, 20],
name="epochs"
))
classifier_hyperparams.append(skopt.space.Categorical(
[True, False],
name="random_augment"
))
classifier_hyperparams.append(skopt.space.Categorical(
[1, 8],
name="batch_size", prior=[0.1, 0.9]
))
'''
else:
raise ValueError("Unrecognized classifier arg")
VAL_RESULTS_CSV = f"hyperparam_search_val.{Classifier.__name__}.{VLM.__name__}.csv"
TEST_RESULTS_CSV = f"hyperparam_search_test.{Classifier.__name__}.{VLM.__name__}.csv"
val_run_handler = FewShotTestHandler(VAL_RESULTS_CSV)
test_run_handler = FewShotTestHandler(TEST_RESULTS_CSV)
'''
Hyperparameter Search
'''
# Combine vlm and classifier hyperparams
for vlm_hyper in vlm_hyperparams:
vlm_hyper.name = f"vlm.{vlm_hyper.name}"
for classifier_hyper in classifier_hyperparams:
classifier_hyper.name = f"classifier.{classifier_hyper.name}"
hyperparam_space = vlm_hyperparams + classifier_hyperparams
train_dataset = None
val_dataset = None
test_dataset = None
cur_dataset_kwargs = None
vlm = None
cur_vlm_kwargs = None
pbar = tqdm(list(itertools.product(*test_params_dict.values())))
for test_params in pbar:
test_params = dict(zip(test_params_dict.keys(), test_params))
pbar.set_postfix(test_params)
dataset_kwargs = {key[8:]: val for key, val in test_params.items() if key.startswith("dataset.")}
test_kwargs = {key[5:]: val for key, val in test_params.items() if key.startswith("test.")}
# Update dataset
if val_dataset is None or cur_dataset_kwargs != dataset_kwargs:
train_dataset = DatasetHandler(**dataset_kwargs, split="train")
val_dataset = DatasetHandler(**dataset_kwargs, split="val")
test_dataset = DatasetHandler(**dataset_kwargs, split="test")
cur_dataset_kwargs = dataset_kwargs
# Convert n_way = None into n_way = max-ways
if test_kwargs["n_way"] is None:
test_kwargs["n_way"] = train_dataset.category_count()
# Skip if matching final run already exists in test results csv
matching_test_run_results = filter_test_results(
test_run_handler.results,
dict(
test_kwargs,
query_dataset=test_dataset.id(),
support_dataset=test_dataset.id(),
val_tuning_dataset=val_dataset.id() if USE_VAL_TUNING else None,
vlm_class=VLM.__name__,
**{f"vlm.{key}": val for key, val in fixed_vlm_kwargs.items()},
classifier_class=Classifier.__name__,
**{f"classifier.{key}": val for key, val in fixed_classifier_kwargs.items()}
)
)
if len(matching_test_run_results):
print(f"Skipping hyperparam search which already has test results.")
print(f"Dataset: {test_dataset.id()}")
print(f"Test kwargs:\n{json.dumps(test_kwargs, indent=2)}")
continue
'''
Hyperparameter search in given dataset split
'''
# skopt loss function
@skopt.utils.use_named_args(hyperparam_space)
def val_neg_accuracy(**hyperparam_kwargs):
hyperparam_kwargs = dict(hyperparam_kwargs)
vlm_kwargs = {key[4:]: val for key, val in hyperparam_kwargs.items() if key.startswith("vlm.")}
classifier_kwargs = {key[11:]: val for key, val in hyperparam_kwargs.items() if key.startswith("classifier.")}
# Update vlm if necessary (allow reuse if unchanging)
global vlm, cur_vlm_kwargs
if vlm is None or cur_vlm_kwargs != vlm_kwargs:
vlm = VLM(**fixed_vlm_kwargs, **vlm_kwargs)
cur_vlm_kwargs = vlm_kwargs
# Update classifier
classifier = Classifier(vlm, **fixed_classifier_kwargs, **classifier_kwargs)
accuracy = val_run_handler.run_few_shot_test(classifier, val_dataset, val_dataset, **test_kwargs, val_tuning_dataset=val_dataset if USE_VAL_TUNING else None)
return -1 * accuracy
# Callback function for progress bar
skopt_pbar = None
def skopt_callback(current_skopt_results):
best_run_ind = np.argmin(current_skopt_results.func_vals)
postfix_dict = {
"best_acc": round(-1 * current_skopt_results.func_vals[best_run_ind], 5)
}
for i, param_space in enumerate(hyperparam_space):
key = param_space.name
val = current_skopt_results.x_iters[best_run_ind][i]
if isinstance(val, float):
val = round(val, 5)
postfix_dict[key] = val
skopt_pbar.update(1)
skopt_pbar.set_postfix(postfix_dict)
# Find any previous val runs which shall be fed into skopt hyperparam search alg
# Possible since hyperparameter spaces are named to match names in results csvs, which cover all vlm and classifier parameters
# Only used for skopt search methods
prev_val_run_results = filter_test_results(
val_run_handler.results,
dict(
test_kwargs,
query_dataset=val_dataset.id(),
support_dataset=val_dataset.id(),
val_tuning_dataset=val_dataset.id() if USE_VAL_TUNING else None,
vlm_class=VLM.__name__,
**{f"vlm.{key}": val for key, val in fixed_vlm_kwargs.items()},
classifier_class=Classifier.__name__,
**{f"classifier.{key}": val for key, val in fixed_classifier_kwargs.items()}
)
).reset_index(drop=True)
if len(prev_val_run_results):
x0, y0 = [], []
for i in range(len(prev_val_run_results)):
x0.append(tuple(prev_val_run_results.loc[i, hyper.name] for hyper in hyperparam_space))
y0.append(-1 * prev_val_run_results.loc[i, "accuracy"])
else:
x0, y0 = None, None
# Run skopt process
skopt_pbar = tqdm(total=N_HYPERPARAM_SEARCH_CALLS)
if SEARCH_METHOD == "gp":
skopt_results = skopt.gp_minimize(val_neg_accuracy, hyperparam_space, n_calls=N_HYPERPARAM_SEARCH_CALLS, callback=skopt_callback, x0=x0, y0=y0)
elif SEARCH_METHOD == "forest":
skopt_results = skopt.forest_minimize(val_neg_accuracy, hyperparam_space, n_calls=N_HYPERPARAM_SEARCH_CALLS, callback=skopt_callback, x0=x0, y0=y0)
elif SEARCH_METHOD == "random":
for _ in range(N_HYPERPARAM_SEARCH_CALLS):
val_neg_accuracy([hyper.rvs(1)[0] for hyper in hyperparam_space])
skopt_pbar.update(1)
elif SEARCH_METHOD == "grid":
categorical_hyperparams = [hyper for hyper in hyperparam_space if type(hyper) is skopt.space.space.Categorical]
other_hyperparams = [hyper for hyper in hyperparam_space if type(hyper) is not skopt.space.space.Categorical]
# Grid must iterate over all selected categories
runs_per_category_choice = N_HYPERPARAM_SEARCH_CALLS
for hyper in categorical_hyperparams:
runs_per_category_choice = runs_per_category_choice // len(hyper.categories)
if runs_per_category_choice == 0:
raise ValueError("Too many categorical hyperparameters to iterate over all choices without exceeding {} runs.".format(N_HYPERPARAM_SEARCH_CALLS))
if len(other_hyperparams) == 0:
discretized_hyperparam_space = [hyper.categories for hyper in hyperparam_space]
else:
samples_per_cont_hyper = int(np.power(runs_per_category_choice, 1 / len(other_hyperparams)))
if samples_per_cont_hyper == 0:
raise ValueError(f"Too many hyperparameters to iterate over all categories and still choose multiple values per continuous space, without exceeding {N_HYPERPARAM_SEARCH_CALLS} runs.")
discretized_hyperparam_space = []
for hyper in hyperparam_space:
if type(hyper) is skopt.space.space.Categorical:
discretized_hyperparam_space.append(hyper.categories)
elif type(hyper) in [skopt.space.space.Real, skopt.space.space.Integer]:
if hyper.prior == "log-uniform":
hyper_samples = np.logspace(np.log10(hyper.low), np.log10(hyper.high), num=samples_per_cont_hyper, endpoint=True)
else:
hyper_samples = np.linspace(hyper.low, hyper.high, num=samples_per_cont_hyper, endpoint=True)
if type(hyper) is skopt.space.space.Integer:
hyper_samples = np.round(hyper_samples)
discretized_hyperparam_space.append(hyper_samples)
else:
raise NotImplementedError
hyperparam_value_iter = list(itertools.product(*discretized_hyperparam_space))
skopt_pbar.total = len(hyperparam_value_iter)
for i, hyperparam_values in enumerate(hyperparam_value_iter):
val_neg_accuracy(hyperparam_values)
skopt_pbar.update(1)
else:
raise NotImplementedError
'''
Test run with best hyperparams
'''
# Select best hyperparameter values from val split
best_hyperparam_values = find_hyperparameters(
val_run_handler.results,
hyperparam_cols=[col for col in val_run_handler.results if col.startswith("classifier.") or col.startswith("vlm.")]
)
matching_hyperparam_values = filter_test_results(
best_hyperparam_values,
dict(
test_kwargs,
query_dataset=val_dataset.id(),
support_dataset=val_dataset.id(),
val_tuning_dataset=val_dataset.id() if USE_VAL_TUNING else None,
vlm_class=VLM.__name__,
**{f"vlm.{key}": val for key, val in fixed_vlm_kwargs.items()},
classifier_class=Classifier.__name__,
**{f"classifier.{key}": val for key, val in fixed_classifier_kwargs.items()}
)
).reset_index(drop=True)
vlm_kwargs = {}
classifier_kwargs = {}
for col in matching_hyperparam_values.columns:
if col.startswith("vlm."):
if col[4:] in fixed_vlm_kwargs.keys():
continue
val = matching_hyperparam_values.loc[0, col]
# NaN values indicate they aren't applicable for this vlm/classifier
if not pd.isna(val):
# Replace np types with native python types
if type(val).__module__ == np.__name__:
val = val.item()
vlm_kwargs[col[4:]] = val
if col.startswith("classifier."):
if col[11:] in fixed_classifier_kwargs.keys():
continue
val = matching_hyperparam_values.loc[0, col]
# NaN values indicate they aren't applicable for this vlm/classifier
if not pd.isna(val):
# Replace np types with native python types
if type(val).__module__ == np.__name__:
val = val.item()
if col != "classifier.metric":
classifier_kwargs[col[11:]] = val
else:
classifier_kwargs[col[11:]] = Similarity[val]
# Update vlm if necessary (allow reuse if unchanging)
if vlm is None or cur_vlm_kwargs != vlm_kwargs:
vlm = VLM(**fixed_vlm_kwargs, **vlm_kwargs)
cur_vlm_kwargs = vlm_kwargs
# Update classifier
classifier = Classifier(vlm, **fixed_classifier_kwargs, **classifier_kwargs)
test_acc = test_run_handler.run_few_shot_test(classifier, test_dataset, test_dataset, **test_kwargs, val_tuning_dataset=val_dataset if USE_VAL_TUNING else None)
print(f"Test Run Complete!")
print(f"Accuracy: {test_acc}")
print(f"Dataset: {test_dataset.id()}")
print(f"Test: {json.dumps(test_kwargs, indent=2)}")
print(f"VLM: {json.dumps(vlm_kwargs, indent=2)}")
# print(f"Classifier: {json.dumps(classifier_kwargs, indent=2)}")