-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamoc.py
229 lines (182 loc) · 8.63 KB
/
amoc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
import torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import time
import os
import copy
import pickle
import json
from utils import AE_MNIST, AMoC
seed = 0
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
def train_model(model, dataloaders, criterion, optimizer, scheduler, input_size, device, num_epochs=25):
since = time.time()
train_loss_history = []
val_loss_history = []
dotp_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 999
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_dotp = 0.0
# Iterate over data.
for inputs, _ in dataloaders[phase]:
inputs = inputs.view(-1,input_size).to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
outputs = model(inputs)
loss = criterion(outputs, inputs)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
if phase == 'train' and optimizer.__class__.__name__ == 'AMoC':
running_dotp += optimizer.dotp * inputs.size(0)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
if phase == 'train':
epoch_dotp = running_dotp / len(dataloaders[phase].dataset)
dotp_history.append(epoch_dotp)
print('{} Loss: {:.4f} DotP: {:.4f}'.format(phase, epoch_loss, epoch_dotp))
else:
print('{} Loss: {:.4f}'.format(phase, epoch_loss))
# deep copy the model
if phase == 'train':
train_loss_history.append(epoch_loss)
if phase == 'val' and epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_loss_history.append(epoch_loss)
scheduler.step()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Loss: {:4f}'.format(best_loss))
# load best model weights
model.load_state_dict(best_model_wts)
return model, train_loss_history, val_loss_history, dotp_history, best_loss, time_elapsed
def test_model(model, dataloaders, criterion, input_size):
running_loss = 0
with torch.no_grad():
for inputs, _ in dataloaders:
input_test = inputs.view(-1, input_size).to(device)
outputs = model_ft(input_test).to(device)
loss = criterion(outputs, input_test)
running_loss += loss.item() * inputs.size(0)
test_loss = running_loss / len(dataloaders.dataset)
print('Test Loss: {:.4f}'.format(test_loss))
return test_loss
if __name__ == "__main__":
cuda_device = 0
experiment_num = 1
model_name = 'autoenc_mnist'
dataset = 'mnist'
input_size = 784
num_epochs = 500
batch_size = 200
test_batch_size = 1000
beta = 0.1
lr = 5e-3
momentum = 0.99
dampening = 0
weight_decay = 0
algorithm = 'AMoC'
gamma = 0.1
milestones = [200, 400, 800]
betas = [0.99, 0.999]
epsilon = 1e-8
data_transforms = {
'train': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]),
'test': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
}
device = torch.device("cuda:"+str(cuda_device) if torch.cuda.is_available() else "cpu")
if dataset == 'mnist':
mnist = torchvision.datasets.MNIST('./', train=True, transform=data_transforms['train'], target_transform=None, download=True)
mnist_train, mnist_val = torch.utils.data.random_split(mnist, [54000, 6000])
image_datasets = {'train': mnist_train, 'val': mnist_val}
image_datasets_test = torchvision.datasets.MNIST('./', train=False, transform=data_transforms['test'], target_transform=None, download=True)
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True) for x in ['train', 'val']}
if model_name == 'autoenc_mnist':
model = AE_MNIST(input_shape=input_size).to(device)
if algorithm == 'AMoC':
optimizer = AMoC(model.parameters(), lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=False, beta=beta)
elif algorithm == 'AMoC-N':
optimizer = AMoC(model.parameters(), lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=True, beta=beta)
elif algorithm == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.0, dampening=dampening, weight_decay=weight_decay, nesterov=False)
elif algorithm == 'Heavy Ball':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=False)
elif algorithm == 'Nesterov':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=True)
elif algorithm == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=lr, betas=betas, eps=epsilon, weight_decay=weight_decay, amsgrad=False)
elif algorithm == 'AMSGrad':
optimizer = optim.Adam(model.parameters(), lr=lr, betas=betas, eps=epsilon, weight_decay=weight_decay, amsgrad=True)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=gamma)
criterion = nn.MSELoss()
model_ft, train_hist, val_hist, dotp_hist, best_loss, time_elapsed = train_model(model, dataloaders_dict, criterion, optimizer, scheduler, input_size, device, num_epochs=num_epochs)
#test
dataloaders_test = torch.utils.data.DataLoader(image_datasets_test, batch_size=test_batch_size, shuffle=True, num_workers=0, pin_memory=True)
test_loss = test_model(model_ft, dataloaders_test, criterion, input_size)
#save
path = model_name+'/'
fname = path+model_name+'_'+str(experiment_num)
os.mkdir(fname)
fname = fname+'/'+model_name+'_'+str(experiment_num)
torch.save(model_ft.state_dict(), fname+".pt")
with open(fname+".txt", "wb") as fp:
pickle.dump(train_hist, fp)
pickle.dump(val_hist, fp)
pickle.dump(dotp_hist, fp)
dictinoary = {}
dictinoary['hyper-parameters'] = []
dictinoary['hyper-parameters'].append({'num_epochs': num_epochs,
'batch_size' : batch_size,
'test_batch_size' : test_batch_size,
'input_size' : input_size,
'cuda_device' : cuda_device,
'beta' : beta,
'lr' : lr,
'momentum' : momentum,
'dampening' : dampening,
'weight_decay' : weight_decay,
'algorithm' : algorithm,
'gamma' : gamma,
'milestones' : milestones,
'betas' : betas,
'epsilon' : epsilon,
'seed': seed,
})
dictinoary['values'] = []
dictinoary['values'].append({'best_loss': best_loss,
'time_elapsed': time_elapsed,
'test_loss': test_loss
})
with open(fname+"_dict"+".txt", "w") as fp:
json.dump(dictinoary, fp)