-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvMine.py
282 lines (251 loc) · 11.8 KB
/
EvMine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import sys
import argparse
from utils import *
from collections import defaultdict
import numpy as np
import igraph as ig
from sklearn.svm import SVC
import re
import json
from tqdm import tqdm
from itertools import product, combinations
import inflect
infect_engine = inflect.engine()
from nltk.corpus import stopwords
import string
stop_words = set(stopwords.words('english'))
import datefinder
import dateutil
MONTHS = dateutil.parser.parserinfo.MONTHS
def main(args, config):
doc2time, min_t, num_t, all_t = load_doc_time(os.path.join('data', args.data, args.doc_time))
docs, doc_sents = load_ucphrase(os.path.join('data', args.data, args.ucphrase_res), len(doc2time))
doc_emb = np.load(os.path.join('data', args.data, args.doc_emb))
phrase_emb_sim, i2p, p2i = get_phrase_emb_sim(args)
# Construct initial vocab
word_count = defaultdict(int)
for doc in docs:
words = doc.split(' ')
for word in words:
word_count[word] += 1
vocabulary = [w for w in word_count if word_count[w] >= 10 and w not in stop_words and w not in string.punctuation]
print('Pre-processing')
# word to document count
w2dc = {w:word_counting(w, docs) for w in tqdm(vocabulary)}
# filter with lower tf-idf
w2tfidf = {}
for w, dc in w2dc.items():
if len(dc) == 0:
w2tfidf[w] = 0
else:
w2tfidf[w] = np.log(np.sum(list(dc.values()))+1) * np.log(float(len(docs)) / len(dc))
w_tfidf_num = int(len(w2tfidf) * 0.3)
w_tfidf_thres = np.partition(list(w2tfidf.values()), kth=w_tfidf_num)[w_tfidf_num]
w2tc = {w:{} for w in vocabulary}
for w, dc in w2dc.items():
for did, c in dc.items():
if doc2time[did] not in w2tc[w]:
w2tc[w][doc2time[did]] = []
w2tc[w][doc2time[did]].append(c)
w2tc = {w:{t:(np.sum(c) if len(c) > config['phrase_single_day_freq'] and w2tfidf[w] > w_tfidf_thres else 0) for t,c in tc.items()} for w, tc in w2tc.items()}
# Event-Related Peak Phrase Detection
print('Event-related peak phrase detection')
wt2score = {}
for w, t in tqdm(product(vocabulary, all_t)):
wt2score[(w,t)] = tf_itf(w, t, w2tc, num_t, window_size=3)[0]
peak_phrases = []
for pt, s in sorted(wt2score.items(), key=lambda x: x[1], reverse=True):
if '_' in pt[0]:
peak_phrases.append(pt)
if len(peak_phrases) >= 500 or s <= 0:
break
# Event-Indicative Peak Phrase Clustering
print('Event-indicative peak phrase clustering')
top_times = set([pt[1] for pt in peak_phrases])
prev = set()
prev_t = None
nodes = set()
edge2weight = {}
for t in sorted(top_times):
if prev_t and (t-prev_t).days != 1:
prev = set()
pt_on_t = [pt for pt in peak_phrases if pt[1]==t]
nodes.update(pt_on_t)
for pt0, pt1 in combinations(pt_on_t, 2):
total = len([tt for tt in doc2time if tt == t])
docs1 = set([d for d in w2dc[pt0[0]] if doc2time[d] == t])
docs2 = set([d for d in w2dc[pt1[0]] if doc2time[d] == t])
inter = len(docs1.intersection(docs2)) + 1e-5
npmi = -np.log(inter * float(total) / len(docs1) / len(docs2)) / np.log(inter / float(total))
if pt0[0] in p2i and pt1[0] in p2i:
emb_sim = phrase_emb_sim[p2i[pt0[0]], p2i[pt1[0]]]
edge2weight[(pt0, pt1)] = np.sqrt(max(0, npmi) * max(0, emb_sim))
for p, t in pt_on_t:
if p in prev:
edge2weight[((p,t), (p, t-datetime.timedelta(days=1)))] = 3
prev = set([p for p,t in pt_on_t])
prev_t = t
g = ig.Graph()
nodes = list(nodes)
n2i = {n:i for i,n in enumerate(nodes)}
g.add_vertices(len(nodes))
edges = [(n2i[i], n2i[j]) for i,j in edge2weight.keys()]
weights = [edge2weight[(nodes[i], nodes[j])] for i,j in edges]
g.add_edges(edges)
levels = g.community_multilevel(weights=weights, return_levels=True)
events = []
for ci, c in enumerate(levels[-1]):
c = [nodes[i] for i in c]
if len(c) < 2:
continue
c_t2p = defaultdict(list)
for pt in c:
c_t2p[pt[1]].append(pt[0])
cluster = set()
sorted_times = sorted(c_t2p.keys())
for t in sorted_times:
for pp in c_t2p[t]:
cluster.add(pp)
tis = [(t-min_t).days for t in sorted_times]
start = min_t+datetime.timedelta(days=min(tis))
end = min_t+datetime.timedelta(days=max(tis))
events.append([list(cluster), start, end, [[],[]]])
# Key Event Document Selection
print('Iterative key event doc selection')
for ite in range(config['num_iterations']):
print(f'Iteration {ite}')
events = sorted(events, key=lambda x: x[1])
doc2event_matching = [{} for _ in range(len(docs))]
for ev_i, (event_phrases, start, end, _) in enumerate(events):
enriched_phrases = set(event_phrases)
for p in event_phrases:
if p in p2i:
for i, s in enumerate(phrase_emb_sim[p2i[p]]):
if s > 0.95 and i2p[i] not in enriched_phrases and all((i2p[i] not in ep) for ep,s2,e2,_ in events if e2 >= start and s2 <= end):
enriched_phrases.add(i2p[i])
time_docs = [did for did in range(len(docs)) if doc2time[did] >= start and doc2time[did] <= end]
for did in time_docs:
doc2event_matching[did][ev_i] = (len([w2dc[w][did] for w in enriched_phrases if w in w2dc and did in w2dc[w]]), \
sum([w2dc[w][did] for w in enriched_phrases if w in w2dc and did in w2dc[w]]))
event_docs_coverage = [{} for _ in events]
for did, ev_matching in enumerate(doc2event_matching):
if len(ev_matching) == 0:
continue
ev_id = sorted(ev_matching.keys(), key=lambda x: ev_matching[x], reverse=True)[0]
event_docs_coverage[ev_id][did] = ev_matching[ev_id]
event2doc_id = {}
final_eid = 0
for eid, (e_docs, (ep,_,_,(doc_ids, negs))) in enumerate(zip(event_docs_coverage, events)):
pseudo_doc_ids = [di for di in doc_ids if di not in negs]
for (did, s) in [ds for ds in sorted(e_docs.items(), key=lambda x: x[1], reverse=True) if ds[0] not in negs][:10]:
if s[0] == 0: break
pseudo_doc_ids.append(did)
pseudo_doc_ids = list(set(pseudo_doc_ids))
if len(pseudo_doc_ids) >= config['min_pseudo_labels']:
event2doc_id[final_eid] = {'doc_ids':pseudo_doc_ids, 'start':events[eid][1].strftime('%Y-%m-%d'), 'end':events[eid][2].strftime('%Y-%m-%d'), 'prev_id':eid}
final_eid += 1
ratio = 2
repeat = 50
doc2ev = []
for evid, ev in event2doc_id.items():
doc_ids = ev['doc_ids']
all_pred = []
for _ in range(repeat):
pos = doc_ids
negs = np.random.choice(len(docs), len(pos)*(ratio+1), replace=False)
negs = [i for i in negs if i not in pos][:ratio*len(pos)]
svc = SVC()
svc.fit(doc_emb[pos+negs], [1]*len(pos)+[0]*len(negs))
pred = svc.decision_function(doc_emb)
all_pred.append(pred)
all_pred = np.mean(all_pred, axis=0)
doc2ev.append(all_pred)
doc2ev = np.array(doc2ev).T
ev2all_doc_pos = [{} for _ in event2doc_id]
for doc_id, doc_scores in enumerate(doc2ev):
classified = np.argmax(doc_scores)
if doc_scores[classified] > 0:
ev2all_doc_pos[classified][doc_id] = doc_scores[classified]
# temporal filtering & feedback
key_event_docs = []
to_add_event = []
for evid, ev_docs_with_score in enumerate(ev2all_doc_pos):
if len(ev_docs_with_score) == 0: continue
start = datetime.datetime.strptime(event2doc_id[evid]['start'], '%Y-%m-%d')
end = datetime.datetime.strptime(event2doc_id[evid]['end'], '%Y-%m-%d')
time_sorted = sorted(ev_docs_with_score.keys(), key=lambda x: doc2time[x])
sub_clusters = []
clus = []
prev_t = min_t
for di in time_sorted:
if (doc2time[di]-prev_t).days > 1:
if len(clus) > 0:
sub_clusters.append(clus)
clus = [di]
else:
clus.append(di)
prev_t = doc2time[di]
sub_clusters.append(clus)
final_res = []
for sci, sc in enumerate(sub_clusters):
cluster_times = set([doc2time[di] for di in sc])
if min(cluster_times) <= end and max(cluster_times) >= start:
final_res.extend(sc)
continue
try:
extracted_time = [t for t in datefinder.find_dates(' '.join(doc_sents[di][:3]), base_date=doc2time[sc[0]])]
except:
continue
if len(sc) == 1 and\
any(t >= start-datetime.timedelta(days=1) and t <= end+datetime.timedelta(days=1) for t in extracted_time)\
and doc2time[sc[0]] >= start:
final_res.extend(sc)
elif len(sc) > 1:
to_add_event.append((sc, min(cluster_times), max(cluster_times)))
key_event = sorted(final_res, key=lambda x: ev_docs_with_score[x], reverse=True)
key_event_docs.append(key_event)
events[event2doc_id[evid]['prev_id']][3] = [key_event[:5], [di for di in range(len(docs)) if doc2ev[di, evid] < 0.1]]
if ite == config['num_iterations'] - 1:
break
for new_docs, start, end in to_add_event:
if any((start <= e and end >= s) for _, s, e, _ in events):
continue
kp_candidates = set()
for di in new_docs:
kp_candidates |= set([w for w in docs[di].split(' ') if '_' in w])
scores = {}
for kp in kp_candidates:
if kp not in w2dc or w2tfidf[kp] < w_tfidf_thres: continue
tf = sum((w2dc[kp][di] if di in w2dc[kp] else 0) for di in new_docs)
idf = float(len(docs)) / len(w2dc[kp]) * sum([1 for di in new_docs if di in w2dc[kp]])
scores[kp] = tf * np.log(idf)
new_keyphrases = set()
for kp in sorted(scores.keys(), key=lambda x: scores[x], reverse=True):
if scores[kp] <= 0:
break
if any((kp in ep) for ep,s2,e2,_ in events if e2 >= start and s2 <= end):
continue
new_keyphrases.add(kp)
if len(new_keyphrases) >= 5: break
events.append([list(new_keyphrases), start, end, [new_docs, []]])
# Save results
with open(os.path.join('data', args.data, args.out), 'w') as f:
json.dump(key_event_docs, f, indent=2)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default='hkprotest')
parser.add_argument("--ucphrase_res", type=str, default='doc2sents-0.9-tokenized.id.json')
parser.add_argument("--doc_time", type=str, default='doc2time.txt')
parser.add_argument("--doc_emb", type=str, default='doc_emb.npy')
parser.add_argument("--phrase_emb", type=str, default='phrase_emb')
parser.add_argument("--out", type=str, default='output.json')
args = parser.parse_args()
if args.data == 'hkprotest':
config = {'phrase_single_day_freq':3, 'min_pseudo_labels':5}
elif args.data == 'ebola':
config = {'phrase_single_day_freq':0, 'min_pseudo_labels':3}
else:
sys.exit("Set paramters for new corpus")
config['num_iterations'] = 2
main(args, config)