-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_bert.py
65 lines (59 loc) · 2.43 KB
/
test_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import hf_utils
from bert_model import BertModel
from train_tempobert_ancient import ModelArguments
from transformers import AutoModelForMaskedLM, pipeline
def predict_time(sentence, fill_mask_pipelines, print_results=True):
if not isinstance(fill_mask_pipelines, list):
fill_mask_pipelines = [fill_mask_pipelines]
time_tokens = [f"<{time}>" for time in fill_mask_pipelines[0].model.config.times]
result_dict = {}
original_sentence = sentence
sentence = "[MASK] " + sentence
for model_i, fill_mask in enumerate(fill_mask_pipelines):
fill_result = fill_mask(sentence, targets=time_tokens, truncation=True)
result = {res["token_str"]: res["score"] for res in fill_result}
if len(fill_mask_pipelines) == 1:
result_dict = result
else:
result_dict[model_i] = result
if print_results:
res_str = ', '.join(
f'{token} ({score:.2f})' for token, score in result.items()
)
if len(fill_mask_pipelines) > 1:
print(f"{model_i}: {original_sentence}: {res_str}")
else:
print(f"{original_sentence}: {res_str}")
return result_dict
def load_model(model_name_or_path, expect_times_in_model=True):
model_args = ModelArguments(model_name_or_path=model_name_or_path)
config_kwargs = {}
model, tokenizer = hf_utils.load_pretrained_model(
model_args,
AutoModelForMaskedLM,
expect_times_in_model=expect_times_in_model,
**config_kwargs,
)
return model, tokenizer
class Tester:
def __init__(self, model, device=-1, preload=False) -> None:
hf_utils.prepare_tf_classes()
if not isinstance(model, list):
model = [model]
model_tokenizer_list = (
load_model(m, expect_times_in_model=True) for m in model
)
if preload:
model_tokenizer_list = list(model_tokenizer_list)
self.fill_mask_pipelines = (
pipeline("fill-mask", model=model, tokenizer=tokenizer, device=device)
for model, tokenizer in model_tokenizer_list
)
if preload:
self.fill_mask_pipelines = list(self.fill_mask_pipelines)
self.bert_models = (
BertModel(hf_pipeline=fill_mask_pipeline, device=device)
for fill_mask_pipeline in self.fill_mask_pipelines
)
if preload:
self.bert_models = list(self.bert_models)