-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzs_ve_cali_2.py
379 lines (338 loc) · 16.7 KB
/
zs_ve_cali_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
import matplotlib
matplotlib.use('Qt5Agg')
'''
color:
Wakefulness: '#f2b67c'
RORR: '#808080'
post-RORR1: '#8aaad2'
post-RORR2: '#d6afaf'
post-RORR3: '#d3d3d3'
color_list_shadow = ['#a8a8a8', '#9ba7ca', '#c29799']
color_list_line = ['#000000', '#0c5172', '#851717']
'''
def search_csv(path=".", name=""): # 抓取csv文件
result = []
for item in os.listdir(path):
item_path = os.path.join(path, item)
if os.path.isdir(item_path):
search_csv(item_path, name)
elif os.path.isfile(item_path):
if name + ".csv" == item:
# global csv_result
# csv_result.append(name)
result.append(item_path)
# print(csv_result)
# print(item_path + ";", end="")
# result = item
return result
def read_csv(path='.', name="", column="", element="", state_name=""):
"""
column[0]: file_name column[1]:第一次looming时间点
sheet1:Fwake状态 sheet2:Frorr状态
"""
item_path = os.path.join(path, name)
with open(item_path, 'rb') as f:
csv_data = pd.read_excel(f, sheet_name=state_name)
# df1 = csv_data.set_index([column]) # 选取某一列数据
# sel_data = df1.loc[element] # 根据元素提取特定数据
return csv_data
def velocity(file_path, num): # Cali velocity
"""
nose:0 left_ear:1 Right_ear:2 neck:3 left_front_limb:4 right_front_limb:5
left_hind_limb:6 right_hind_limb:7 left_front_claw:8 right_front_claw:9
left_hind_claw:10 right_hind_claw:11 back:12 root_tail:13
mid_tail:14 tip_tail:15
"""
with open(file_path[num], 'rb') as f:
df = pd.read_csv(f)
df1 = df.iloc[2:, 36:39] # select back vector
df1 = df1.astype(float)
v = df1.diff()
v_x = v.iloc[start_time[num]:end_time[num] + 1, 0].tolist()
v_y = v.iloc[start_time[num]:end_time[num] + 1, 1].tolist()
v_z = v.iloc[start_time[num]:end_time[num] + 1, 2].tolist()
v_list = []
for j in range(0, len(v_x)):
absolute_v = np.sqrt(np.square(v_x[j]) + np.square(v_y[j]) + +np.square(v_z[j])) # Cali absolute velocity
# absolute_v = smooth(absolute_v, 30)
v_list.append(absolute_v)
v_smooth = list(savgol_filter(v_list, 29, 2))
return v_smooth
def sns_data(dataframe, file_list, be_looming_time, after_looming_time, typename="", row_name=''):
global start_time
global end_time
global start_label
global end_label
start_time = []
end_time = []
for i in dataframe[row_name][0:8]:
start_label = int(i) - 30 * be_looming_time
end_label = int(i) + 30 * after_looming_time
start_time.append(start_label)
end_time.append(end_label)
# dataframe['start_time'] = start_time
# dataframe['end_time'] = end_time
v_list = []
for i in range(len(file_list)):
# velocity(csv_result, i)
v_list.append(velocity(file_list, i))
# print(v_list)
back_v_all = {"time": [], "value": [], "type": []}
time_list = [i for i in range(0, end_label - start_label + 1)]
time_list_all = []
for i in range(len(v_list)):
time_list_all.append(time_list)
back_v_all["type"].append([typename] * (end_label - start_label + 1))
time_list_all = sum(time_list_all, [])
back_v_all["time"] = time_list_all
back_v_all["value"] = v_list
back_v_all["value"] = sum(back_v_all["value"], [])
back_v_all["type"] = sum(back_v_all["type"], [])
df = pd.DataFrame(back_v_all)
return df
def single_sns_data(dataframe, file_list, num, be_looming_time, after_looming_time, row_name="", typename=""):
start_time_label = int(dataframe[row_name][num]) - 30 * be_looming_time
end_time_label = int(dataframe[row_name][num]) + 30 * after_looming_time
with open(file_list, 'rb') as f:
df = pd.read_csv(f)
df1 = df.iloc[2:, 36:39] # select back vector
df1 = df1.astype(float)
v = df1.diff()
v_x = v.iloc[start_time_label:end_time_label + 1, 0].tolist()
v_y = v.iloc[start_time_label:end_time_label + 1, 1].tolist()
v_z = v.iloc[start_time_label:end_time_label + 1, 2].tolist()
v_list = []
for j in range(0, len(v_x)):
absolute_v = np.sqrt(np.square(v_x[j]) + np.square(v_y[j]) + +np.square(v_z[j])) # Cali absolute velocity
# absolute_v = smooth(absolute_v, 30)
v_list.append(absolute_v)
v_smooth = list(savgol_filter(v_list, 29, 2))
# back_v_all = {"time": [], "value": [], "type": []}
back_v_all = {"time": [], "value": []}
time_list = [i for i in range(0, end_time_label - start_time_label + 1)]
# back_v_all["type"] = [typename] * (end_time_label - start_time_label + 1)
back_v_all["time"] = time_list
back_v_all["value"] = v_smooth
df = pd.DataFrame(back_v_all)
return df
if __name__ == '__main__':
"""
速度柱状图
"""
# a = read_csv(path=r'D:/3D_behavior/Arousal_behavior/Arousal_result_all/Spontaneous_arousal/SP_Arousal_result_add2',
# name="video_info.xlsx", column="looming_time1", state_name="Female_Wakefulness") # Male_Wakefulness
#
# file_list_1 = []
# for item in a['Video_name'][0:10]:
# item = item.replace("-camera-0", "")
# file_list1 = search_csv(
# path=r"D:/3D_behavior/Arousal_behavior/Arousal_result_all/Spontaneous_arousal/SP_Arousal_result_add2"
# r"/3Dskeleton/Calibrated_3DSkeleton",
# name="{}_Cali_Data3d".format(item))
# file_list_1.append(file_list1)
# file_list_1 = list(np.ravel(file_list_1))
# #
# # sns_data_1 = sns_data(a, file_list_1, 7, 53, typename="Male_Wakefulness", row_name='looming_time1')
# # # csv_result.clear()
# #
# b = read_csv(path=r'D:/3D_behavior/Arousal_behavior/Arousal_result_all/Spontaneous_arousal/SP_Arousal_result_add2',
# name="video_info.xlsx", column="looming_time1", state_name="Female_RoRR")
# file_list_2 = []
# for item in b['Video_name'][0:10]:
# item = item.replace("-camera-0", "")
# file_list2 = search_csv(
# path=r"D:/3D_behavior/Arousal_behavior/Arousal_result_all/Spontaneous_arousal/SP_Arousal_result_add2"
# r"/3Dskeleton/Calibrated_3DSkeleton",
# name="{}_Cali_Data3d".format(item))
# file_list_2.append(file_list2)
# file_list_2 = list(np.ravel(file_list_2))
# #
# # sns_data_2 = sns_data(b, file_list_2, 7, 53, typename="Female_RoRR_1", row_name='looming_time1')
# # sns_data_3 = sns_data(b, file_list_2, 5, 55, typename="Female_RoRR_2", row_name='looming_time2')
# # sns_data_4 = sns_data(b, file_list_2, 3, 57, typename="Female_RoRR_3", row_name='looming_time3')
# # # sns_data = sns_data_1.append(sns_data_4)
# # # sns_data = pd.concat([sns_data_1, sns_data_2, sns_data_3, sns_data_4])
# # sns_data = pd.concat([sns_data_2, sns_data_1, sns_data_4])
#
# '''
# 单只典型鼠
# '''
# num = 1
# # file_path = file_list_1[0]
# # sns_data_0 = single_sns_data(a, file_list_1[num], num, 4, 56,
# # typename="Wakefulness", row_name='looming_time1')
# # sns_data_1 = single_sns_data(b, file_list_2[num], num, 9, 51,
# # typename="Female_RoRR_3", row_name='looming_time1')
# # sns_data_2 = single_sns_data(b, file_list_2[num], num, 7, 53,
# # typename="Female_RoRR_1", row_name='looming_time2')
# # sns_data_3 = single_sns_data(b, file_list_2[num], num, 7, 53,
# # typename="Female_RoRR_2", row_name='looming_time3')
# # sns_data_4 = single_sns_data(b, file_list_2[num], num, 7, 53,
# # typename="Female_RoRR_4", row_name='looming_time4')
#
# # sns_data_0 = single_sns_data(a, file_list_1[num], num, 299, 0,
# # row_name='looming_time1')
# # sns_data_1 = single_sns_data(b, file_list_2[num], num, 299, 0,
# # row_name='looming_time1')
# # sns_data_2 = single_sns_data(b, file_list_2[num], num, 299, 0,
# # row_name='looming_time2')
# # sns_data_3 = single_sns_data(b, file_list_2[num], num, 299, 0,
# # row_name='looming_time3')
# # sns_data_4 = single_sns_data(b, file_list_2[num], num, 299, 0,
# # row_name='looming_time4')
# # sns_data_5 = single_sns_data(b, file_list_2[num], num, 299, 0,
# # row_name='looming_time5')
# for x in range(11, 12, 1):
# # x = 1
# row_name = 'looming_time{}'.format(x)
# sns_data_1 = single_sns_data(b, file_list_2[num], num, 299, 0,
# row_name=row_name)
#
# # sns_data = pd.concat([sns_data_0, sns_data_1, sns_data_2, sns_data_3, sns_data_4])
# # sns_data = pd.concat([sns_data_1, sns_data_2, sns_data_3])
# color_list_shadow = ['#a8a8a8', '#9ba7ca', '#c29799']
# # color_list_line = ['#000000', '#0c5172', '#851717']
# color_list_line = ['#851717']
# fig = plt.figure(figsize=(5, 2), dpi=300)
#
# ax = sns.barplot(x="time", y="value", data=sns_data_1, color='#d6afaf')
#
# # # sns.lineplot(data=sns_data_0, x="time", y="value", hue='type', palette=color_list_line)
# # ax = sns.lineplot(data=sns_data_4, x="time", y="value", color='#f2b67c', linewidth=4)
# # # sns.lineplot(data=sns_data, x="time", y="value", hue='type')
# # plt.axvspan(150, 300, color='gray', alpha=0.3, lw=0)
# # plt.rcParams.update({'font.family': 'Arial'})
# # x = [i for i in range(0, 1801, 300)]
# # labels = ['0', '10', '20', '30', '40', '50', '60']
# plt.ylim(0, 15, 5)
# # plt.xticks(x, labels, fontsize=24)
# # plt.yticks([0, 5, 10, 15, 20], fontsize=24)
# # plt.legend(fontsize=6)
# # plt.xlabel('Time (s)', fontsize=26)
# # plt.ylabel('Speed (cm/s)', fontsize=26)
# # # plt.title("Male-15 velocity after looming stimulate", fontsize=8)
# # # plt.title("Male-15 velocity after looming stimulate during RORR", fontsize=8)
# # # plt.title("Wakefulness", fontsize=8)
# # # figure.subplots_adjust(bottom=0.2, right=0.8, top=0.9)
# # ax.spines['top'].set_visible(False)
# # ax.spines['right'].set_visible(False)
# # ax.spines['bottom'].set_linewidth(3.5)
# # ax.spines['left'].set_linewidth(3.5)
# plt.axis('off')
# plt.tight_layout()
#
# plt.show()
# # plt.savefig('D:/3D_behavior/Arousal_behavior/Arousal_result_all/Analysis_result/velocity/SP_Arousal_add'
# # '/F_2_{}.tiff'.format(row_name), dpi=300)
# # plt.close()
"""
速度折线图
"""
a = read_csv(path=r'D:/3D_behavior/Arousal_behavior/Arousal_result_all',
name="video_info.xlsx", column="looming_time1", state_name="Male_Wakefulness") # Male_Wakefulness
file_list_1 = []
for item in a['Video_name'][0:9]:
item = item.replace("-camera-0", "")
file_list1 = search_csv(
path=r"D:/3D_behavior/Arousal_behavior/Arousal_result_all/3Dskeleton/Calibrated_3DSkeleton",
name="{}_Cali_Data3d".format(item))
file_list_1.append(file_list1)
file_list_1 = list(np.ravel(file_list_1))
#
# sns_data_1 = sns_data(a, file_list_1, 7, 53, typename="Male_Wakefulness", row_name='looming_time1')
# # csv_result.clear()
#
b = read_csv(path=r'D:/3D_behavior/Arousal_behavior/Arousal_result_all',
name="video_info.xlsx", column="looming_time1", state_name="Male_RoRR")
file_list_2 = []
for item in b['Video_name'][0:10]:
item = item.replace("-camera-0", "")
file_list2 = search_csv(
path=r"D:/3D_behavior/Arousal_behavior/Arousal_result_all/3Dskeleton/Calibrated_3DSkeleton",
name="{}_Cali_Data3d".format(item))
file_list_2.append(file_list2)
file_list_2 = list(np.ravel(file_list_2))
#
# sns_data_2 = sns_data(b, file_list_2, 7, 53, typename="Female_RoRR_1", row_name='looming_time1')
# sns_data_3 = sns_data(b, file_list_2, 5, 55, typename="Female_RoRR_2", row_name='looming_time2')
# sns_data_4 = sns_data(b, file_list_2, 3, 57, typename="Female_RoRR_3", row_name='looming_time3')
# # sns_data = sns_data_1.append(sns_data_4)
# # sns_data = pd.concat([sns_data_1, sns_data_2, sns_data_3, sns_data_4])
# sns_data = pd.concat([sns_data_2, sns_data_1, sns_data_4])
'''
单只典型鼠
'''
num = 4
# file_path = file_list_1[0]
# sns_data_0 = single_sns_data(a, file_list_1[num], num, 4, 56,
# typename="Wakefulness", row_name='looming_time1')
# sns_data_1 = single_sns_data(b, file_list_2[num], num, 9, 51,
# typename="Female_RoRR_3", row_name='looming_time1')
# sns_data_2 = single_sns_data(b, file_list_2[num], num, 7, 53,
# typename="Female_RoRR_1", row_name='looming_time2')
# sns_data_3 = single_sns_data(b, file_list_2[num], num, 7, 53,
# typename="Female_RoRR_2", row_name='looming_time3')
# sns_data_4 = single_sns_data(b, file_list_2[num], num, 7, 53,
# typename="Female_RoRR_4", row_name='looming_time4')
# sns_data_0 = single_sns_data(a, file_list_1[num], num, 299, 0,
# row_name='looming_time1')
# sns_data_1 = single_sns_data(b, file_list_2[num], num, 299, 0,
# row_name='looming_time1')
# sns_data_2 = single_sns_data(b, file_list_2[num], num, 299, 0,
# row_name='looming_time2')
# sns_data_3 = single_sns_data(b, file_list_2[num], num, 299, 0,
# row_name='looming_time3')
# sns_data_4 = single_sns_data(b, file_list_2[num], num, 299, 0,
# row_name='looming_time4')
# sns_data_5 = single_sns_data(b, file_list_2[num], num, 299, 0,
# row_name='looming_time5')
for j in range(1, 2, 1):
# x = 1
row_name = 'looming_time{}'.format(j)
# sns_data_1 = single_sns_data(b, file_list_2[num], num, 6, 54,
# row_name=row_name)
sns_data_1 = single_sns_data(b, file_list_2[num], num, 9, 51,
row_name=row_name)
# sns_data = pd.concat([sns_data_0, sns_data_1, sns_data_2, sns_data_3, sns_data_4])
# sns_data = pd.concat([sns_data_1, sns_data_2, sns_data_3])
color_list_shadow = ['#a8a8a8', '#9ba7ca', '#c29799']
# color_list_line = ['#000000', '#0c5172', '#851717']
color_list_line = ['#851717']
fig = plt.figure(figsize=(10, 8), dpi=300)
# ax = sns.barplot(x="time", y="value", data=sns_data_1, color='#d6afaf')
# sns.lineplot(data=sns_data_0, x="time", y="value", hue='type', palette=color_list_line)
ax = sns.lineplot(data=sns_data_1, x="time", y="value", color='black', linewidth=5)
# sns.lineplot(data=sns_data, x="time", y="value", hue='type')
plt.axvspan(150, 300, color='gray', alpha=0.3, lw=0)
plt.rcParams.update({'font.family': 'Arial'})
x = [i for i in range(0, 1801, 300)]
labels = ['0', '10', '20', '30', '40', '50', '60']
# plt.ylim(0, 15, 5)
plt.xticks(x, labels, fontsize=48)
plt.yticks([0, 5, 10, 15, 20], fontsize=48)
plt.legend(fontsize=6)
# plt.xlabel('Time (s)', fontsize=30)
# plt.ylabel('Speed (cm/s)', fontsize=30)
ax.set(xlabel=None)
ax.set(ylabel=None)
# plt.title("Male-15 velocity after looming stimulate", fontsize=8)
# plt.title("Male-15 velocity after looming stimulate during RORR", fontsize=8)
# plt.title("Wakefulness", fontsize=8)
# figure.subplots_adjust(bottom=0.2, right=0.8, top=0.9)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_linewidth(3.5)
ax.spines['left'].set_linewidth(3.5)
ax.get_legend().remove()
# plt.axis('off')
plt.tight_layout()
plt.show()
plt.savefig('D:/3D_behavior/Arousal_behavior/Arousal_result_all/Analysis_result/velocity/Male'
'/M_15_RORR_{}_v3.tiff'.format(j), dpi=300)
plt.close()