-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstate_space_test.py
209 lines (170 loc) · 7.21 KB
/
state_space_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# %%
# 徐阳
# 开发时间:2021/9/11 20:01
import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
import matplotlib
# color_list = sns.color_palette("Spectral", 40)
color_list = ['#845EC2', '#B39CD0', '#D65DB1', '#4FFBDF', '#FFC75F',
'#D5CABD', '#B0A8B9', '#FF6F91', '#F9F871', '#D7E8F0',
'#60DB73', '#E8575A', '#008B74', '#00C0A3', '#FF9671',
'#93DEB1']
"""
Arousal Behavior Class Combine
1、Right turning:[1] (#845EC2) 2、Left turning:[26] (#B39CD0)
3、Sniffing:[2, 4, 10, 11, 12, 16, 22, 25] (#D65DB1)
4、Walking:[3, 6, 7, 19, 30] (#4FFBDF) 5、Trembling:[5, 15, 32, 40] (#FFC75F)
6、Climbing:[8, 29] (#D5CABD) 7、Falling:[9] (#B0A8B9)
8、Immobility:[13, 20, 33, 34] (#FF6F91) 9、Paralysis:[14, 35] (#F9F871)
10、Standing:[17] (#D7E8F0) 11、Trotting:[18, 31] (#60DB73)
12、Grooming:[21] (#E8575A) 13、Flight:[23, 38] (#008B74)
14、Running:[24, 36] (#00C0A3) 15、LORR:[27, 28, 39] (#FF9671)
16、Stepping:[37] (#93DEB1)
"""
def search_csv(path=".", name=""): # 抓取csv文件
result = []
for item in os.listdir(path):
item_path = os.path.join(path, item)
if os.path.isdir(item_path):
search_csv(item_path, name)
elif os.path.isfile(item_path):
if name + ".csv" == item:
# global csv_result
# csv_result.append(name)
result.append(item_path)
# print(csv_result)
# print(item_path + ";", end="")
# result = item
return result
def read_csv(path='.', name="", column="", element="", state_name=""):
"""
column[0]: file_name column[1]:第一次looming时间点
sheet1:Fwake状态 sheet2:Frorr状态
"""
item_path = os.path.join(path, name)
with open(item_path, 'rb') as f:
csv_data = pd.read_excel(f, sheet_name=state_name)
# df1 = csv_data.set_index([column]) # 选取某一列数据
# sel_data = df1.loc[element] # 根据元素提取特定数据
return csv_data
def pre_data(file_path, movement_label_num):
with open(file_path, 'rb') as f:
csv_data = pd.read_csv(f)
label = csv_data.loc[:, 'new_label']
segBoundary = csv_data.loc[:, 'segBoundary']
seg_space_list = []
seg_before_list = []
# movement_label_num = 3
# x = 4290
for i in range(0, len(segBoundary), 1):
# for i in range(641, 671, 1):
if label[i] == movement_label_num:
if i == 0:
seg_space = segBoundary[i]
seg_space_list.append(seg_space)
seg_before = 0
seg_before_list.append(seg_before)
else:
seg_space = segBoundary[i] - segBoundary[i - 1]
seg_space_list.append(seg_space)
seg_before = segBoundary[i - 1]
seg_before_list.append(seg_before)
# seg_before_list.insert(0, seg_before_list[0])
x_range_list = []
for i in range(0, len(seg_before_list), 1):
x_left = seg_before_list[i]
x_broken = seg_space_list[i]
x_range_list.append((x_left, x_broken))
# x_range_list.insert(0, [0, seg_before_list[0]])
return x_range_list
def data_combine(file_path):
data = []
for i in range(1, 17):
behavior = pre_data(file_path, i)
data.append(behavior)
return data
if __name__ == '__main__':
a = read_csv(path=r'D:/3D_behavior/Arousal_behavior/Arousal_result_all',
name="video_info.xlsx", column="looming_time3", state_name="Male_RoRR") # Male_Wakefulness
file_list_1 = []
# for item in a['Video_name'][0:len(a['Video_name'])]:
for item in a['Video_name'][0:5]:
item = item.replace("-camera-0", "")
file_list1 = search_csv(
path=r"D:/3D_behavior/Arousal_behavior/Arousal_result_all/BeAMapping/BeAMapping_replace",
name="{}_Feature_Space".format(item))
file_list_1.append(file_list1)
file_list_1 = list(np.ravel(file_list_1))
b = read_csv(path=r'D:/3D_behavior/Arousal_behavior/Arousal_result_all',
name="video_info.xlsx", column="looming_time3", state_name="Female_RoRR") # Female_Wakefulness
file_list_2 = []
# for item in b['Video_name'][0:len(a['Video_name'])]:
for item in b['Video_name'][0:6]:
item = item.replace("-camera-0", "")
file_list1 = search_csv(
path=r"D:/3D_behavior/Arousal_behavior/Arousal_result_all/BeAMapping/BeAMapping_replace",
name="{}_Feature_Space".format(item))
file_list_2.append(file_list1)
file_list_2 = list(np.ravel(file_list_2))
data = []
for j in range(1, 17):
with open(file_list_2[4], 'rb') as f:
csv_data = pd.read_csv(f)
label = csv_data.loc[:, 'new_label']
segBoundary = csv_data.loc[:, 'segBoundary']
seg_space_list = []
seg_before_list = []
# movement_label_num = 3
# x = 4290
# movement_label_num = [i for i in range(1, 17)]
# for i in range(0, len(segBoundary), 1):
for i in range(815, 848, 1):
if label[i] == j:
if i == 0:
seg_space = segBoundary[i]
seg_space_list.append(seg_space)
seg_before = 0
seg_before_list.append(seg_before)
else:
seg_space = segBoundary[i] - segBoundary[i - 1]
seg_space_list.append(seg_space)
seg_before = segBoundary[i - 1]
seg_before_list.append(seg_before)
# seg_before_list.insert(0, seg_before_list[0])
x_range_list = []
for i in range(0, len(seg_before_list), 1):
x_left = seg_before_list[i]
x_broken = seg_space_list[i]
x_range_list.append((x_left, x_broken))
# behavior = pre_data(file_path, i)
data.append(x_range_list)
# Male_data = []
# for i in range(4, 5):
# single_data = data_combine(file_list_1[i])
# Male_data.append(single_data)
#
# Female_data = []
# for i in range(4, 5):
# single_data = data_combine(file_list_2[i])
# Female_data.append(single_data)
plt.figure(figsize=(5, 1), dpi=300)
# plt.figure(figsize=(15, 3), dpi=300)
# for j in range(len(Male_data)):
# for i in range(len(Male_data[0])):
# plt.broken_barh(Male_data[j][i], (j, 0.8), facecolors=color_list[i])
# plt.broken_barh(Female_data[j][i], (j + 5, 0.8), facecolors=color_list[i])
for i in range(len(data)):
plt.broken_barh(data[i], (0, 0.8), facecolors=color_list[i])
# plt.axhline(y=4.9, linewidth=1.0, color='black', linestyle='--')
# plt.yticks([2.5, 7.5], ['Male', 'Female'])
# plt.xticks([0, 9000, 18000], ['0', '5', '10'])
plt.xticks([0, 9000, 18000, 27000, 36000, 45000], ['0', '5', '10', '15', '20', '25'])
plt.tight_layout()
plt.axis('off')
# plt.spines['right'].set_visible(False)
# plt.spines['top'].set_visible(False)
plt.show()