-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
206 lines (153 loc) · 6.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os, sys, shutil
import os.path as osp
import gym, random, pickle, os.path, math, glob
import numpy as np
from datetime import timedelta
from timeit import default_timer as timer
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from utils.wrappers import *
from utils.hyperparameters import Config
from utils.plot import plot_reward
from agents.BaseAgent import BaseAgent
class ExperienceReplayMemory:
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
def push(self, transition):
self.memory.append(transition)
if len(self.memory) > self.capacity:
del self.memory[0]
def sample(self, batch_size):
return random.sample(self.memory, batch_size), None, None
def __len__(self):
return len(self.memory)
class DQN(nn.Module):
def __init__(self, input_shape, num_actions):
super(DQN, self).__init__()
self.input_shape = input_shape
self.num_actions = num_actions
self.conv1 = nn.Conv2d(self.input_shape[0], 32, kernel_size=8, stride=4)
self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.fc1 = nn.Linear(self.feature_size(), 512)
self.fc2 = nn.Linear(512, self.num_actions)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def feature_size(self):
return self.conv3(self.conv2(self.conv1(torch.zeros(1, *self.input_shape)))).view(1, -1).size(1)
class Model(BaseAgent):
def __init__(self, static_policy=False, env=None, config=None, log_dir='/tmp/gym'):
super(Model, self).__init__(config=config, env=env, log_dir=log_dir)
self.device = config.device
self.gamma = config.GAMMA
self.lr = config.LR
self.target_net_update_freq = config.TARGET_NET_UPDATE_FREQ
self.experience_replay_size = config.EXP_REPLAY_SIZE
self.batch_size = config.BATCH_SIZE
self.learn_start = config.LEARN_START
self.update_freq = config.UPDATE_FREQ
self.static_policy = static_policy
self.num_feats = env.observation_space.shape
self.num_actions = env.action_space.n
self.env = env
self.declare_networks()
self.target_model.load_state_dict(self.model.state_dict())
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
# move to correct device
self.model = self.model.to(self.device)
self.target_model.to(self.device)
if self.static_policy:
self.model.eval()
self.target_model.eval()
else:
self.model.train()
self.target_model.train()
self.update_count = 0
self.declare_memory()
def declare_networks(self):
self.model = DQN(self.num_feats, self.num_actions)
self.target_model = DQN(self.num_feats, self.num_actions)
def declare_memory(self):
self.memory = ExperienceReplayMemory(self.experience_replay_size)
def append_to_replay(self, s, a, r, s_):
self.memory.push((s, a, r, s_))
def prep_minibatch(self):
# random transition batch is taken from experience replay memory
transitions, indices, weights = self.memory.sample(self.batch_size)
batch_state, batch_action, batch_reward, batch_next_state = zip(*transitions)
shape = (-1,) + self.num_feats
batch_state = torch.tensor(batch_state, device=self.device, dtype=torch.float).view(shape)
batch_action = torch.tensor(batch_action, device=self.device, dtype=torch.long).squeeze().view(-1, 1)
batch_reward = torch.tensor(batch_reward, device=self.device, dtype=torch.float).squeeze().view(-1, 1)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch_next_state)), device=self.device,
dtype=torch.uint8)
try: # sometimes all next states are false
non_final_next_states = torch.tensor([s for s in batch_next_state if s is not None], device=self.device,
dtype=torch.float).view(shape)
empty_next_state_values = False
except:
non_final_next_states = None
empty_next_state_values = True
return batch_state, batch_action, batch_reward, non_final_next_states, non_final_mask, empty_next_state_values, indices, weights
def compute_loss(self, batch_vars):
batch_state, batch_action, batch_reward, non_final_next_states, non_final_mask, empty_next_state_values, indices, weights = batch_vars
# estimate
current_q_values = self.model(batch_state).gather(1, batch_action)
# target
with torch.no_grad():
max_next_q_values = torch.zeros(self.batch_size, device=self.device, dtype=torch.float).unsqueeze(dim=1)
if not empty_next_state_values:
max_next_action = self.get_max_next_state_action(non_final_next_states)
max_next_q_values[non_final_mask] = self.target_model(non_final_next_states).gather(1, max_next_action)
expected_q_values = batch_reward + self.gamma * max_next_q_values
diff = (expected_q_values - current_q_values)
loss = self.MSE(diff)
loss = loss.mean()
return loss
def update(self, s, a, r, s_, frame=0):
if self.static_policy:
return None
self.append_to_replay(s, a, r, s_)
if frame < self.learn_start or frame % self.update_freq != 0:
return None
batch_vars = self.prep_minibatch()
loss = self.compute_loss(batch_vars)
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
for param in self.model.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
self.update_target_model()
self.save_td(loss.item(), frame)
self.save_sigma_param_magnitudes(frame)
def get_action(self, s, eps=0.1):
with torch.no_grad():
if np.random.random() >= eps or self.static_policy:
X = torch.tensor([s], device=self.device, dtype=torch.float)
a = self.model(X).max(1)[1].view(1, 1)
return a.item()
else:
return np.random.randint(0, self.num_actions)
def update_target_model(self):
self.update_count += 1
self.update_count = self.update_count % self.target_net_update_freq
if self.update_count == 0:
self.target_model.load_state_dict(self.model.state_dict())
def get_max_next_state_action(self, next_states):
return self.target_model(next_states).max(dim=1)[1].view(-1, 1)
def finish_nstep(self):
pass
def reset_hx(self):
pass
def MSE(self, x):
return 0.5 * x.pow(2)