-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdata_loader_new.py
922 lines (795 loc) · 36.9 KB
/
data_loader_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
import os
import csv
import copy
import json
import logging
import random
import torch
from torch.utils.data import TensorDataset
from utils import get_label
logger = logging.getLogger(__name__)
class InputExample(object):
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
def __init__(self, guid, text_a, label, true = -1):
self.guid = guid
self.text_a = text_a
self.label = label
self.true = true
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class ReInputExample(InputExample):
def __init__(self, guid, text_a, span_a, span_b, label, true = -1):
self.guid = guid
self.text_a = text_a
self.span_a = span_a
self.span_b = span_b
self.label = label
self.true = true
class WiCInputExample(InputExample):
def __init__(self, guid, text_a, text_b, span_a, span_b, label, true = -1):
self.guid = guid
self.text_a = text_a
self.span_a = span_a
self.text_b = text_b
self.span_b = span_b
self.label = label
self.true = true
class MaskedLmInstance(object):
"""
A single set of features of masked data.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
"""
def __init__(self, input_ids, attention_mask, masked_token_id, masked_true_label,
):
self.input_ids = input_ids
self.masked_token_id = masked_token_id
self.masked_true_label = masked_true_label
self.attention_mask = attention_mask
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class InputFeatures(object):
"""
A single set of features of data.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
"""
def __init__(self, input_ids, attention_mask, token_type_ids, label_id, true = -1,
e1_mask = None, e2_mask = None, keys=None):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.label_id = label_id
self.true = true
self.e1_mask = e1_mask
self.e2_mask = e2_mask
self.keys=keys
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class SemEvalProcessor(object):
"""Processor for the Semeval data set """
def __init__(self, args):
self.args = args
self.relation_labels = get_label(args)
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[1]
label = self.relation_labels.index(line[0])
if i % 1000 == 0:
logger.info(line)
examples.append(InputExample(guid=guid, text_a=text_a, label=label))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
file_to_read = None
if mode == 'train':
file_to_read = self.args.train_file
elif mode == 'dev':
file_to_read = self.args.dev_file
elif mode == 'test':
file_to_read = self.args.test_file
logger.info("LOOKING AT {}".format(os.path.join(self.args.data_dir, file_to_read)))
return self._create_examples(self._read_tsv(os.path.join(self.args.data_dir, file_to_read)), mode)
class YelpProcessor(object):
"""Processor for the Yelp data set """
def __init__(self, args):
self.args = args
#self.relation_labels = self.load_json(filename) # all possible labels
filename = args.data_dir + '/' + 'config.json'
label, num_label, label2id, id2label = self.load_info(filename)
self.relation_labels = label
self.num_label = num_label
self.label2id = label2id
self.id2label = id2label
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
def read_data(self, filename, mode):
path = filename + '/' + mode + '_data.json'
path = filename
with open(path, 'r') as f:
data = json.load(f)
for i in range(len(data)):
data[i]["labelid"] = self.label2id[data[i]["label"]]
return data
def load_info(self, filename):
with open(filename, 'r') as f:
file = json.load(f)
label2id = file["label2id"]
num_label = file["labels"]
id2label = file["id2label"]
label = [id2label[str(int(i))] for i in range(num_label)]
return label, num_label, label2id, id2label
def _create_examples(self, data, set_type):
examples = []
for i, d in enumerate(data):
guid = "%s-%s" % (set_type, i)
text_a = d["text"]
label = d["labelid"]
if i % 2000 == 0:
logger.info(d)
examples.append(InputExample(guid=guid, text_a=text_a, label=label))
return examples
def _create_examples_raw(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[1]
label = self.relation_labels.index(line[0])
if i % 2000 == 0:
logger.info(line)
examples.append(InputExample(guid=guid, text_a=text_a, label=label))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
file_to_read = None
if mode == 'train':
file_to_read = self.args.train_file
elif mode == 'dev':
file_to_read = self.args.dev_file
elif mode == 'test':
file_to_read = self.args.test_file
elif mode == 'unlabeled':
file_to_read = self.args.unlabel_file
logger.info("LOOKING AT {}".format(os.path.join(self.args.data_dir, file_to_read)))
return self._create_examples(self.read_data(os.path.join(self.args.data_dir, file_to_read), mode), mode)
class YoutubeProcessor(object):
"""Processor for the Yelp data set """
def __init__(self, args):
self.args = args
#self.relation_labels = self.load_json(filename) # all possible labels
#filename = args.data_dir + '/' + 'config.json'
#label, num_label, label2id, id2label = self.load_info(filename)
#self.relation_labels =
#self.num_label = num_label
#self.label2id = None
#self.id2label = None
self.rule = self.args.rule
if 'agnews' in self.args.task:
self.num_label = 4
elif self.args.task == 'TREC' or 'trec' in self.args.task:
self.num_label = 6
elif self.args.task in ['yelp','imdb','youtube']:
self.num_label = 2
#for i in range(self.num_label):
self.relation_labels = [x for x in range(self.num_label)]
self.label2id = {x:x for x in range(self.num_label)}
self.id2label = {x:x for x in range(self.num_label)}
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
def read_data(self, filename, mode):
path = filename + '/' + mode + '_data.json'
path = filename
with open(path, 'r') as f:
data = json.load(f)
return data
def _create_examples(self, data, set_type):
examples = []
for i, d in enumerate(data):
guid = "%s-%s" % (set_type, i)
text_a = d["text"]
label = d["label"] if (self.rule == 0 and set_type !='unlabeled') else d["major"]
#print(text_a, label)
#if i>10:
# assert 0
if set_type not in ['train', 'unlabeled']:
label = d["label"]
if set_type == 'unlabeled':
label = -1
true = d["label"]
if i % 2000 == 0:
logger.info(d)
examples.append(InputExample(guid=guid, text_a=text_a, label=label, true = true))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
file_to_read = None
if mode == 'train':
file_to_read = self.args.train_file
elif mode == 'dev':
file_to_read = self.args.dev_file
elif mode == 'test':
file_to_read = self.args.test_file
elif mode == 'unlabeled':
file_to_read = self.args.unlabel_file
logger.info("LOOKING AT {}".format(os.path.join(self.args.data_dir, file_to_read)))
return self._create_examples(self.read_data(os.path.join(self.args.data_dir, file_to_read), mode), mode)
class WiCProcessor(object):
"""Processor for the Yelp data set """
def __init__(self, args):
self.args = args
self.rule = self.args.rule
self.num_label = 2
self.relation_labels = [x for x in range(self.num_label)]
self.label2id = {x:x for x in range(self.num_label)}
self.id2label = {x:x for x in range(self.num_label)}
def read_data(self, filename, mode):
path = filename
with open(path, 'r') as f:
data = [json.loads(l) for l in f.readlines()]
return data
def _create_examples(self, data, set_type):
examples = []
for i, d in enumerate(data):
guid = "%s-%s" % (set_type, i)
text_a = d["sentence1"]
text_b = d["sentence2"]
span_a = (d["start1"], d["end1"])
span_b = (d["start2"], d["end2"])
if set_type == 'train' and self.rule == 1:
label = d["rule_label"]
elif set_type in ['unlabeled']:
label = -1
else:
label = d['label']
label = int(label)
true = int(d["label"])
if i % 2000 == 0:
logger.info(d)
examples.append(WiCInputExample(guid=guid, text_a=text_a, span_a=span_a,
text_b=text_b, span_b=span_b,
label=label, true = true))
if set_type == 'train':
examples.append(WiCInputExample(guid=guid, text_a=text_b, span_a=span_b,
text_b=text_a, span_b=span_a,
label=label, true = true))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
file_to_read = None
if mode == 'train':
file_to_read = self.args.train_file
elif mode == 'dev':
file_to_read = self.args.dev_file
elif mode == 'test':
file_to_read = self.args.test_file
elif mode == 'unlabeled':
file_to_read = self.args.unlabel_file
logger.info("LOOKING AT {}".format(os.path.join(self.args.data_dir, file_to_read)))
return self._create_examples(self.read_data(os.path.join(self.args.data_dir, file_to_read), mode), mode)
class ChemprotProcessor(object):
"""Processor for the Yelp data set """
def __init__(self, args):
self.args = args
self.rule = self.args.rule
self.num_label = 10
self.relation_labels = [x for x in range(self.num_label)]
self.label2id = {x:x for x in range(self.num_label)}
self.id2label = {x:x for x in range(self.num_label)}
def read_data(self, filename, mode):
path = filename
with open(path, 'r') as f:
data = [json.loads(l) for l in f.readlines()]
return data
def _create_examples(self, data, set_type):
examples = []
for i, d in enumerate(data):
guid = "%s-%s" % (set_type, i)
text_a = d["text"]
span_a = (d["start1"], d["end1"])
span_b = (d["start2"], d["end2"])
assert d["start1"] >= 0 and d["start2"] >= 0
if set_type == 'train' and self.rule == 1:
label = d["major"]
elif set_type in ['unlabeled']:
label = -1
else:
label = d['label']
label = int(label)
label = max(label-1,0)
true = int(d["label"])
true = max(true-1,0)
if i % 2000 == 0:
logger.info(d)
examples.append(ReInputExample(guid=guid, text_a=text_a, span_a=span_a,
span_b=span_b, label=label, true = true))
return examples
def get_examples(self, mode):
"""
Args:
mode: train, dev, test
"""
file_to_read = None
if mode == 'train':
file_to_read = self.args.train_file
elif mode == 'dev':
file_to_read = self.args.dev_file
elif mode == 'test':
file_to_read = self.args.test_file
elif mode == 'unlabeled':
file_to_read = self.args.unlabel_file
logger.info("LOOKING AT {}".format(os.path.join(self.args.data_dir, file_to_read)))
return self._create_examples(self.read_data(os.path.join(self.args.data_dir, file_to_read), mode), mode)
processors = {
"semeval": SemEvalProcessor,
"yelp2": YelpProcessor,
"youtube": YoutubeProcessor,
"imdb": YoutubeProcessor,
"yelp": YoutubeProcessor,
"agnews": YoutubeProcessor,
"agnews1": YoutubeProcessor,
"TREC": YoutubeProcessor,
"wic": WiCProcessor,
"chemprot": ChemprotProcessor,
}
def tokenize_with_span(tokenizer, sent, span):
_a = tokenizer.tokenize(sent[:span[0]])
_w = tokenizer.tokenize(sent[span[0]:span[1]])
_b = tokenizer.tokenize(sent[span[1]:])
return _a+_w+_b, len(_a),len(_a)+len(_w)
def tokenize_with_2span(tokenizer, sent, span_a, span_b):
assert span_a[1]<=span_b[0] or span_a[0]>=span_b[1]
if span_a[1]<=span_b[0]:
_s0 = tokenizer.tokenize(sent[:span_a[0]])
_wa = tokenizer.tokenize(sent[span_a[0]:span_a[1]])
_s1 = tokenizer.tokenize(sent[span_a[1]:span_b[0]])
_wb = tokenizer.tokenize(sent[span_b[0]:span_b[1]])
_s2 = tokenizer.tokenize(sent[span_b[1]:])
if not (len(_wa) > 0 and len(_wb) > 0):
import ipdb; ipdb.set_trace()
return _s0+_wa+_s1+_wb+_s2, \
len(_s0),len(_s0)+len(_wa), \
len(_s0)+len(_wa)+len(_s1),len(_s0)+len(_wa)+len(_s1)+len(_wb)
else:
_s0 = tokenizer.tokenize(sent[:span_b[0]])
_wb = tokenizer.tokenize(sent[span_b[0]:span_b[1]])
_s1 = tokenizer.tokenize(sent[span_b[1]:span_a[0]])
_wa = tokenizer.tokenize(sent[span_a[0]:span_a[1]])
_s2 = tokenizer.tokenize(sent[span_a[1]:])
if not (len(_wa) > 0 and len(_wb) > 0):
import ipdb; ipdb.set_trace()
return _s0+_wb+_s1+_wa+_s2, \
len(_s0)+len(_wb)+len(_s1),len(_s0)+len(_wb)+len(_s1)+len(_wa), \
len(_s0),len(_s0)+len(_wb) \
def convert_examples_to_features_re(examples, max_seq_len, tokenizer,
cls_token='[CLS]',
cls_token_segment_id=0,
sep_token='[SEP]',
pad_token=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
sequence_b_segment_id=1,
add_sep_token=False,
mask_padding_with_zero=True,
task = 're'
):
features = []
sample_per_example = 3
for (ex_index, example) in enumerate(examples[:]):
if ex_index % 5000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens_a, key_a_start, key_a_end, key_b_start, key_b_end = tokenize_with_2span(tokenizer, example.text_a, example.span_a, example.span_b)
keys = [0]*len(tokens_a)
keys[key_a_start:key_a_end] = [1]*(key_a_end-key_a_start)
keys[key_b_start:key_b_end] = [2]*(key_b_end-key_b_start)
if add_sep_token:
tokens_a += [sep_token]
keys += [0]
token_type_ids_a = [sequence_a_segment_id] * len(tokens_a)
tokens = [cls_token] + tokens_a
keys = [0] + keys
token_type_ids = [cls_token_segment_id] + token_type_ids_a
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
output_tokens = []
masked_lm_labels = []
# Zero-pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
keys = keys + ([0]*padding_length)
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
assert len(keys) == max_seq_len, "Error with input length {} vs {}".format(len(keys), max_seq_len)
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len)
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len)
label_id = int(example.label)
true = int(example.true)
e1_mask = [1 if k==1 else 0 for k in keys ]
e2_mask = [1 if k==2 else 0 for k in keys ]
if ex_index < 1:
logger.info("*** Example ***")
logger.info("guid: %s" % example.guid)
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
if task == 're':
logger.info("e1_mask: %s" % " ".join([str(x) for x in e1_mask]))
logger.info("e2_mask: %s" % " ".join([str(x) for x in e2_mask]))
#assert 0
features.append(
InputFeatures(
input_ids=input_ids,
e1_mask=e1_mask,
e2_mask=e2_mask,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label_id=label_id,
true=true,
)
)
return features
def convert_examples_to_features_wic(examples, max_seq_len, tokenizer,
cls_token='[CLS]',
cls_token_segment_id=0,
sep_token='[SEP]',
pad_token=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
sequence_b_segment_id=1,
add_sep_token=False,
mask_padding_with_zero=True,
task = 're'
):
features = []
sample_per_example = 3
for (ex_index, example) in enumerate(examples[:]):
if ex_index % 5000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens_a, key_a_start, key_a_end = tokenize_with_span(tokenizer, example.text_a, example.span_a)
tokens_b, key_b_start, key_b_end = tokenize_with_span(tokenizer, example.text_b, example.span_b)
keys_a = [0]*len(tokens_a)
keys_a[key_a_start:key_a_end] = [1]*(key_a_end-key_a_start)
keys_b = [0]*len(tokens_b)
keys_b[key_b_start:key_b_end] = [2]*(key_b_end-key_b_start)
if add_sep_token:
tokens_a += [sep_token]
keys_a += [0]
tokens_b += [sep_token]
keys_b += [0]
token_type_ids_a = [sequence_a_segment_id] * len(tokens_a)
token_type_ids_b = [sequence_b_segment_id] * len(tokens_b)
tokens = [cls_token] + tokens_a + tokens_b
keys = [0] + keys_a + keys_b
token_type_ids = [cls_token_segment_id] + token_type_ids_a + token_type_ids_b
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
output_tokens = []
masked_lm_labels = []
# Zero-pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
keys = keys + ([0]*padding_length)
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
assert len(keys) == max_seq_len, "Error with input length {} vs {}".format(len(keys), max_seq_len)
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len)
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len)
label_id = int(example.label)
true = int(example.true)
if ex_index < 1:
logger.info("*** Example ***")
logger.info("guid: %s" % example.guid)
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
if task == 're':
logger.info("e1_mask: %s" % " ".join([str(x) for x in e1_mask]))
logger.info("e2_mask: %s" % " ".join([str(x) for x in e2_mask]))
#assert 0
features.append(
InputFeatures(
input_ids=input_ids,
keys=keys,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label_id=label_id,
true=true,
)
)
return features
def convert_examples_to_features(examples, max_seq_len, tokenizer,
cls_token='[CLS]',
cls_token_segment_id=0,
sep_token='[SEP]',
pad_token=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
add_sep_token=False,
mask_padding_with_zero=True,
task = 're'
):
features = []
sample_per_example = 3
for (ex_index, example) in enumerate(examples[:]):
if ex_index % 5000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
#print(example.text_a)
tokens_a = tokenizer.tokenize(example.text_a)
#print(tokens_a)
if task == 're':
e11_p = tokens_a.index("<e1>") # the start position of entity1
e12_p = tokens_a.index("</e1>") # the end position of entity1
e21_p = tokens_a.index("<e2>") # the start position of entity2
e22_p = tokens_a.index("</e2>") # the end position of entity2
# Replace the token
tokens_a[e11_p] = "$"
tokens_a[e12_p] = "$"
tokens_a[e21_p] = "#"
tokens_a[e22_p] = "#"
# Add 1 because of the [CLS] token
e11_p += 1
e12_p += 1
e21_p += 1
e22_p += 1
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
if add_sep_token:
special_tokens_count = 2
else:
special_tokens_count = 1
if len(tokens_a) > max_seq_len - special_tokens_count:
tokens_a = tokens_a[:(max_seq_len - special_tokens_count)]
tokens = tokens_a
if add_sep_token:
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
#tokens[0] = "$"
#tokens[1] = "<e2>"
input_ids = tokenizer.convert_tokens_to_ids(tokens)
output_tokens = []
masked_lm_labels = []
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
#assert 0
if task == 're':
# e1 mask, e2 mask
e1_mask = [0] * len(attention_mask)
e2_mask = [0] * len(attention_mask)
for i in range(e11_p, e12_p + 1):
e1_mask[i] = 1
for i in range(e21_p, e22_p + 1):
e2_mask[i] = 1
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len)
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len)
label_id = int(example.label)
true = int(example.true)
if ex_index < 1:
logger.info("*** Example ***")
logger.info("guid: %s" % example.guid)
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
if task == 're':
logger.info("e1_mask: %s" % " ".join([str(x) for x in e1_mask]))
logger.info("e2_mask: %s" % " ".join([str(x) for x in e2_mask]))
#assert 0
features.append(
InputFeatures(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label_id=label_id,
true=true,
e1_mask=e1_mask if task == 're' else None,
e2_mask=e2_mask if task == 're' else None
)
)
return features
def load_and_cache_examples(args, tokenizer, mode):
if 'imdb' in args.task:
processor = processors["imdb"](args)
elif 'trec' in args.task:
processor = processors["TREC"](args)
else:
processor = processors[args.task](args)
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
'cached_{}_{}_{}_{}_{}'.format(
mode,
args.task,
list(filter(None, args.model_name_or_path.split("/"))).pop(),
args.max_seq_len,
'dist' if args.rule == 1 else 'clean'
)
)
if os.path.exists(cached_features_file) and args.auto_load:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
if mode == "train":
examples = processor.get_examples("train")
elif mode == "dev":
examples = processor.get_examples("dev")
elif mode == "test":
examples = processor.get_examples("test")
else:
raise Exception("For mode, Only train, dev, test is available")
if args.task_type == 'wic':
features, = convert_examples_to_features_wic(examples, args.max_seq_len, tokenizer, add_sep_token=args.add_sep_token, task = args.task_type)
elif args.task_type == 're':
features = convert_examples_to_features_re(examples, args.max_seq_len, tokenizer, add_sep_token=args.add_sep_token, task = args.task_type)
else:
features = convert_examples_to_features(examples, args.max_seq_len, tokenizer, add_sep_token=args.add_sep_token, task = args.task_type)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
all_true_ids = torch.tensor([f.true for f in features], dtype=torch.long)
all_ids = torch.tensor([ _ for _,f in enumerate(features)], dtype=torch.long)
size = len(features)
if args.task_type == 're':
all_e1_mask = torch.tensor([f.e1_mask for f in features], dtype=torch.long) # add e1 mask
all_e2_mask = torch.tensor([f.e2_mask for f in features], dtype=torch.long) # add e2 mask
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_label_ids, all_e1_mask, all_e2_mask)
elif args.task_type == 'wic':
all_keys = torch.tensor([f.keys for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_label_ids, all_ids, all_true_ids, all_keys)
else:
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_label_ids, all_ids, all_true_ids)
return dataset, processor.relation_labels, processor.num_label, processor.id2label, processor.label2id, size
def load_and_cache_unlabeled_examples(args, tokenizer, mode, train_size = 100):
if 'imdb' in args.task:
processor = processors["imdb"](args)
elif 'trec' in args.task:
processor = processors["TREC"](args)
else:
processor = processors[args.task](args)
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
'cached_{}_{}_{}_{}_unlabel_{}'.format(
mode,
args.task,
list(filter(None, args.model_name_or_path.split("/"))).pop(),
args.max_seq_len,
'dist' if args.rule == 1 else 'clean'
)
)
if os.path.exists(cached_features_file) and args.auto_load:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
assert mode == "unlabeled"
examples = processor.get_examples("unlabeled")
if args.task_type == 'wic':
features = convert_examples_to_features_wic(examples, args.max_seq_len, tokenizer, add_sep_token=args.add_sep_token, task = args.task_type)
elif args.task_type == 're':
features = convert_examples_to_features_re(examples, args.max_seq_len, tokenizer, add_sep_token=args.add_sep_token, task = args.task_type)
else:
features = convert_examples_to_features(examples, args.max_seq_len, tokenizer, add_sep_token=args.add_sep_token, task = args.task_type)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
all_true_ids = torch.tensor([f.true for f in features], dtype=torch.long)
all_ids = torch.tensor([_+train_size for _ ,f in enumerate(features)], dtype=torch.long)
if args.task_type == 're':
all_e1_mask = torch.tensor([f.e1_mask for f in features], dtype=torch.long) # add e1 mask
all_e2_mask = torch.tensor([f.e2_mask for f in features], dtype=torch.long) # add e2 mask
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_label_ids, all_e1_mask, all_e2_mask)
elif args.task_type == 'wic':
all_keys = torch.tensor([f.keys for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_label_ids, all_ids, all_true_ids, all_keys)
else:
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_label_ids, all_ids, all_true_ids)
return dataset, len(features)