-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmentation.py
310 lines (247 loc) · 13 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import cv2
import numpy as np
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
from model_simulated_RGB101 import get_testing_model_resnet101
right_part_idx = [2, 3, 4, 8, 9, 10, 14, 16]
left_part_idx = [5, 6, 7, 11, 12, 13, 15, 17]
human_part = [0, 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13]
human_ori_part = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
seg_num = 15 # current model supports 15 parts only
# # find connection in the specified sequence, center 29 is in the position 15
# limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
# [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
# [1, 16], [16, 18], [3, 17], [6, 18]]
#
# # the middle joints heatmap correpondence
# mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
# [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
# [55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
ori_paf_idx = [12, 13, 20, 21, 14, 15, 16, 17, 22, 23, 24, 25, 0, 1, 2, 3, \
4, 5, 6, 7, 8, 9, 10, 11, 28, 29, 30, 31, 34, 35, 32, 33, 36, 37, 18, 19, 26, 27]
flip_paf_idx = [20, 21, 12, 13, 22, 23, 24, 25, 14, 15, 16, 17, 6, 7, 8, 9, \
10, 11, 0, 1, 2, 3, 4, 5, 28, 29, 32, 33, 36, 37, 30, 31, 34, 35, 26, 27, 18, 19]
x_paf_idx = [20, 12, 22, 24, 14, 16, 6, 8, \
10, 0, 2, 4, 28, 32, 36, 30, 34, 26, 18]
def recover_flipping_output(oriImg, heatmap_ori_size, paf_ori_size, part_ori_size):
heatmap_ori_size = heatmap_ori_size[:, ::-1, :]
heatmap_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
heatmap_flip_size[:, :, left_part_idx] = heatmap_ori_size[:, :, right_part_idx]
heatmap_flip_size[:, :, right_part_idx] = heatmap_ori_size[:, :, left_part_idx]
heatmap_flip_size[:, :, 0:2] = heatmap_ori_size[:, :, 0:2]
paf_ori_size = paf_ori_size[:, ::-1, :]
paf_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
paf_flip_size[:, :, ori_paf_idx] = paf_ori_size[:, :, flip_paf_idx]
paf_flip_size[:, :, x_paf_idx] = paf_flip_size[:, :, x_paf_idx] * -1
part_ori_size = part_ori_size[:, ::-1, :]
part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 15))
part_flip_size[:, :, human_ori_part] = part_ori_size[:, :, human_part]
return heatmap_flip_size, paf_flip_size, part_flip_size
# def recover_flipping_output2(oriImg, part_ori_size):
# part_ori_size = part_ori_size[:, ::-1, :]
# part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 15))
# part_flip_size[:, :, human_ori_part] = part_ori_size[:, :, human_part]
# return part_flip_size
# def part_thresholding(seg_argmax):
# background = 0.6
# head = 0.5
# torso = 0.8
#
# rightfoot = 0.55
# leftfoot = 0.55
# leftthigh = 0.55
# rightthigh = 0.55
# leftshank = 0.55
# rightshank = 0.55
# rightupperarm = 0.55
# leftupperarm = 0.55
# rightforearm = 0.55
# leftforearm = 0.55
# lefthand = 0.55
# righthand = 0.55
#
# part_th = [background, head, torso, leftupperarm, rightupperarm, leftforearm, rightforearm, lefthand, righthand,
# leftthigh, rightthigh, leftshank, rightshank, leftfoot, rightfoot]
# th_mask = np.zeros(seg_argmax.shape)
# for indx in range(15):
# part_prediction = (seg_argmax == indx)
# part_prediction = part_prediction * part_th[indx]
# th_mask += part_prediction
#
# return th_mask
def process(input_image, params, model_params, model):
input_scale = 1.0
oriImg = cv2.imread(input_image)
flipImg = cv2.flip(oriImg, 1)
oriImg = (oriImg / 256.0) - 0.5
flipImg = (flipImg / 256.0) - 0.5
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
segmap_scale1 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale2 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale3 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale4 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale5 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale6 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale7 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale8 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
for m in range(len(multiplier)):
scale = multiplier[m] * input_scale
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
pad = [0, 0,
(imageToTest.shape[0] - model_params['stride']) % model_params['stride'],
(imageToTest.shape[1] - model_params['stride']) % model_params['stride']]
imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant',
constant_values=((0, 0), (0, 0), (0, 0)))
input_img = imageToTest_padded[np.newaxis, ...]
print("\tActual size fed into NN: ", input_img.shape)
output_blobs = model.predict(input_img)
seg = np.squeeze(output_blobs[2])
seg = cv2.resize(seg, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
seg = seg[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
seg = cv2.resize(seg, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
if m == 0:
segmap_scale1 = seg
elif m == 1:
segmap_scale2 = seg
elif m == 2:
segmap_scale3 = seg
elif m == 3:
segmap_scale4 = seg
# flipping
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(flipImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
pad = [0,
0,
(imageToTest.shape[0] - model_params['stride']) % model_params['stride'],
(imageToTest.shape[1] - model_params['stride']) % model_params['stride']
]
imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant',
constant_values=((0, 0), (0, 0), (0, 0)))
input_img = imageToTest_padded[np.newaxis, ...]
print("\tActual size fed into NN: ", input_img.shape)
output_blobs = model.predict(input_img)
# extract outputs, resize, and remove padding
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
seg = np.squeeze(output_blobs[2])
seg = cv2.resize(seg, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
seg = seg[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
seg = cv2.resize(seg, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_recover, paf_recover, seg_recover = recover_flipping_output(oriImg, heatmap, paf, seg)
heatmap_avg = heatmap_avg + heatmap_recover
paf_avg = paf_avg + paf_recover
if m == 0:
segmap_scale5 = seg_recover
elif m == 1:
segmap_scale6 = seg_recover
elif m == 2:
segmap_scale7 = seg_recover
elif m == 3:
segmap_scale8 = seg_recover
heatmap_avg = heatmap_avg / (len(multiplier) * 2)
segmap_a = np.maximum(segmap_scale1, segmap_scale2)
segmap_b = np.maximum(segmap_scale4, segmap_scale3)
segmap_c = np.maximum(segmap_scale5, segmap_scale6)
segmap_d = np.maximum(segmap_scale7, segmap_scale8)
seg_ori = np.maximum(segmap_a, segmap_b)
seg_flip = np.maximum(segmap_c, segmap_d)
seg_avg = np.maximum(seg_ori, seg_flip)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map.shape)
map_left[1:, :] = map[:-1, :]
map_right = np.zeros(map.shape)
map_right[:-1, :] = map[1:, :]
map_up = np.zeros(map.shape)
map_up[:, 1:] = map[:, :-1]
map_down = np.zeros(map.shape)
map_down[:, :-1] = map[:, 1:]
peaks_binary = np.logical_and.reduce(
(map >= map_left, map >= map_right, map >= map_up, map >= map_down, map > params['thre1']))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
canvas = cv2.imread(input_image).copy()
kpts = dict()
for i in range(18):
for j in range(len(all_peaks[i])):
print("i = ", i)
print("j = ", j)
#print(all_peaks[i][j][0:2])
cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
# m = canvas.copy()
# cv2.imshow("hi", m)
# cv2.waitKey(0)
print("---Above is program output, now the custom part---")
print("Now displaying")
print("Never forget that cv2 takes y coord first, and then x coord")
# print(i)
if i == 1 or i == 2 or i == 5:
kpts[i] = all_peaks[i][j][0:2]
# Note that you can get the neck keypoint the same way as the shoulders
cv2.destroyAllWindows()
return canvas, seg_avg, kpts
def segmentation(model, input_folder, output_folder, scale):
keras_weights_file = model
print('start processing...')
# load model
model = get_testing_model_resnet101()
model.load_weights(keras_weights_file)
params, model_params = config_reader()
scale_list = []
for item in scale:
scale_list.append(float(item))
params['scale_search'] = scale_list
seg_dict = {}
kpts_dict = {}
# generate image with body parts
for filename in os.listdir(input_folder):
if filename.endswith(".png") or filename.endswith(".jpg"):
print(input_folder + '/' + filename)
#------------------This is what you need------------------------------------------------
#kpts should contain what you need
canvas, seg, kpts = process(input_folder + '/' + filename, params, model_params, model)
#specifically, it is a dictionary with keys 1, 2, and 5 (rather arbitrary for now)
assert 1 in kpts.keys()
assert 2 in kpts.keys()
assert 5 in kpts.keys()
#kpts[1] should be a tuple of neck coords, kpts[2] left shoulder, and kpts[5] right shoulder
#Use them in cv2 order, which is to say the tuples should be ordered (ycoord, xcoord)
# ------------------This is what you need------------------------------------------------
cv2.imwrite(output_folder + '/sk_' + filename, canvas)
seg_argmax = np.argmax(seg, axis=-1)
seg_max = np.max(seg, axis=-1)
seg_max_thres = (seg_max > 0.1).astype(np.uint8)
seg_argmax *= seg_max_thres
seg_dict[filename] = seg_argmax
kpts_dict[filename] = kpts
#not completely necessary
filename = '%s/%s.jpg' % (output_folder, 'seg_' + os.path.splitext(filename)[0])
cv2.imwrite(filename, seg_argmax)
return seg_dict, kpts_dict