-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathparse_args.py
209 lines (170 loc) · 9.5 KB
/
parse_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from ast import parse
import os
import argparse
from models.basemodels_mlp import cusMLP
import torch
import models
from utils import basics
import wandb
import json
import hashlib
import time
def collect_args():
parser = argparse.ArgumentParser()
# experiments
parser.add_argument('--experiment',
type=str,
choices=[
'baseline',
'CFair',
'LAFTR',
'LNL',
'EnD',
'DomainInd',
'resampling',
'ODR',
'SWA',
'SWAD',
'SAM',
'GSAM',
'SAMSWAD',
'GroupDRO',
'BayesCNN',
'resamplingSWAD',
])
parser.add_argument('--experiment_name', type=str, default='test')
parser.add_argument('--wandb_name', type=str, default='baseline')
parser.add_argument('--if_wandb', type=bool, default=True)
parser.add_argument('--dataset_name', default='CXP', choices=['CXP', 'NIH', 'MIMIC_CXR', 'RadFusion', 'RadFusion4',
'HAM10000', 'HAM100004', 'Fitz17k', 'OCT', 'PAPILA', 'ADNI', 'ADNI3T', 'COVID_CT_MD','RadFusion_EHR',
'MIMIC_III', 'eICU'])
parser.add_argument('--resume_path', type = str, default='', help = 'explicitly indentify checkpoint path to resume.')
parser.add_argument('--sensitive_name', default='Sex', choices=['Sex', 'Age', 'Race', 'skin_type', 'Insurance'])
parser.add_argument('--is_3d', type=bool, default=False)
parser.add_argument('--is_tabular', type=bool, default=False)
# training
parser.add_argument('--random_seed', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--no_cuda', dest='cuda', action='store_false')
parser.add_argument('--lr', type=float, default=1e-4, help = 'learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help = 'weight decay for optimizer')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help = 'decay rate of the learning rate')
parser.add_argument('--lr_decay_period', type=float, default=10, help = 'decay period of the learning rate')
parser.add_argument('--total_epochs', type=int, default=15, help = 'total training epochs')
parser.add_argument('--early_stopping', type=int, default=5, help = 'early stopping epochs')
parser.add_argument('--test_mode', type=bool, default=False, help = 'if using test mode')
parser.add_argument('--hyper_search', type=bool, default=False, help = 'if searching hyper-parameters')
# testing
parser.add_argument('--hash_id', type=str, default = '')
# strategy for validation
parser.add_argument('--val_strategy', type=str, default='loss', choices=['loss', 'worst_auc'], help='strategy for selecting val model')
# cross-domain
parser.add_argument('--cross_testing', action='store_true')
parser.add_argument('--source_domain', default='', choices=['CXP', 'MIMIC_CXR', 'ADNI', 'ADNI3T'])
parser.add_argument('--target_domain', default='', choices=['CXP', 'MIMIC_CXR', 'ADNI', 'ADNI3T'])
parser.add_argument('--cross_testing_model_path', type=str, default='', help='path of the models of three random seeds')
parser.add_argument('--cross_testing_model_path_single', type=str, default='', help='path of the models')
# network
parser.add_argument('--backbone', default = 'cusResNet18', choices=['cusResNet18', 'cusResNet50','cusDenseNet121',
'cusResNet18_3d', 'cusResNet50_3d', 'cusMLP'])
parser.add_argument('--pretrained', type=bool, default=True, help = 'if use pretrained ResNet backbone')
parser.add_argument('--output_dim', type=int, default=14, help='output dimension of the classification network')
parser.add_argument('--num_classes', type=int, default=14, help='number of target classes')
parser.add_argument('--sens_classes', type=int, default=2, help='number of sensitive classes')
parser.add_argument('--input_channel', type=int, default=3, help='input channel of the images')
# resampling
parser.add_argument('--resample_which', type=str, default='group', choices=['class', 'balanced'], help='audit step for LAFTR')
# LAFTR
parser.add_argument('--aud_steps', type=int, default=1, help='audit step for LAFTR')
parser.add_argument('--class_coeff', type=float, default=1.0, help='coefficient for classification loss of LAFTR')
parser.add_argument('--fair_coeff', type=float, default=1.0, help='coefficient for fair loss of LAFTR')
parser.add_argument('--model_var', type=str, default='laftr-eqodd', help='model variation for LAFTR')
# CFair
parser.add_argument('--mu', type=float, default=0.1, help='coefficient for adversarial loss of CFair')
# LNL
parser.add_argument('--_lambda', type=float, default=0.1, help='coefficient for loss of LNL')
# EnD
parser.add_argument('--alpha', type=float, default=0.1, help='weighting parameters alpha for EnD method')
parser.add_argument('--beta', type=float, default=0.1, help='weighting parameters beta for EnD method')
# ODR
parser.add_argument("--lambda_e", type=float, default=0.1, help="coefficient for loss of ODR")
parser.add_argument("--lambda_od", type=float, default=0.1, help="coefficient for loss of ODR")
parser.add_argument("--gamma_e", type=float, default=0.1, help="coefficient for loss of ODR")
parser.add_argument("--gamma_od", type=float, default=0.1, help="coefficient for loss of ODR")
parser.add_argument("--step_size", type=int, default=20, help="step size for adjusting coefficients for loss of ODR")
# GroupDRO
parser.add_argument("--groupdro_alpha", type=float, default=0.2, help="coefficient alpha for loss of GroupDRO")
parser.add_argument("--groupdro_gamma", type=float, default=0.1, help="coefficient gamma for loss of GroupDRO")
# SWA
parser.add_argument("--swa_start", type=int, default=7, help="starting epoch for averaging of SWA")
parser.add_argument("--swa_lr", type=float, default=0.0001, help="learning rate for averaging of SWA")
parser.add_argument("--swa_annealing_epochs", type=int, default=3, help="learning rate for averaging of SWA")
# SWAD
parser.add_argument("--swad_n_converge", type=int, default=3, help="starting converging epoch of SWAD")
parser.add_argument("--swad_n_tolerance", type=int, default=6, help="tolerance steps of SWAD")
parser.add_argument("--swad_tolerance_ratio", type=float, default=0.05, help="tolerance ratio of SWAD")
# SAM
parser.add_argument("--rho", type=float, default=2, help="Rho parameter for SAM.")
parser.add_argument("--adaptive", type=bool, default=True, help="whether using adaptive mode for SAM.")
parser.add_argument("--T_max", type=int, default=50, help="Value for LR scheduler")
# GSAM
parser.add_argument("--gsam_alpha", type=float, default=2, help="Rho parameter for SAM.")
# BayesCNN
parser.add_argument("--num_monte_carlo", type=int, default=10, help="Rho parameter for SAM.")
parser.set_defaults(cuda=True)
# logging
parser.add_argument('--log_freq', type=int, default=50, help = 'logging frequency (step)')
opt = vars(parser.parse_args())
opt = create_exerpiment_setting(opt)
return opt
def create_exerpiment_setting(opt):
# get hash
run_hash = hashlib.sha1()
run_hash.update(str(time.time()).encode('utf-8'))
opt['hash'] = run_hash.hexdigest()[:10]
print('run hash (first 10 digits): ', opt['hash'])
opt['device'] = torch.device('cuda' if opt['cuda'] else 'cpu')
opt['save_folder'] = os.path.join('your_path/fariness_data/model_records', opt['dataset_name'], opt['sensitive_name'], opt['backbone'], opt['experiment'])
opt['resume_path'] = opt['save_folder']
basics.creat_folder(opt['save_folder'])
optimizer_setting = {
'optimizer': torch.optim.Adam,
'lr': opt['lr'],
'weight_decay': opt['weight_decay'],
}
opt['optimizer_setting'] = optimizer_setting
optimizer_setting2 = {
'optimizer': torch.optim.Adam,
'lr': opt['lr'],
'weight_decay': opt['weight_decay'],
}
opt['optimizer_setting2'] = optimizer_setting2
opt['dropout'] = 0.5
# dataset configurations
if opt['cross_testing']:
opt['dataset_name'] = opt['target_domain']
with open('configs/datasets.json', 'r') as f:
data_path = json.load(f)
try:
data_setting = data_path[opt['dataset_name']]
data_setting['augment'] = True
except:
data_setting = {}
opt['data_setting'] = data_setting
# experiment-specific setting
if opt['experiment'] == 'DomainInd':
opt['output_dim'] *= opt['sens_classes']
if opt['experiment'] == 'LAFTR' or opt['experiment'] == 'CFair':
opt['train_sens_classes'] = 2
else:
opt['train_sens_classes'] = opt['sens_classes']
import wandb
if opt['if_wandb'] == True:
with open('configs/wandb_init.json') as f:
wandb_args = json.load(f)
wandb_args["tags"] = [opt['hash']]
wandb_args["name"] = opt['experiment']
wandb.init(**wandb_args, config = opt)
else:
wandb = None
return opt, wandb