-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpseudo_label.py
45 lines (34 loc) · 1.61 KB
/
pseudo_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""
@author: Baixu Chen
@contact: [email protected]
"""
import torch.nn as nn
import torch.nn.functional as F
class ConfidenceBasedSelfTrainingLoss(nn.Module):
"""
Self training loss that adopts confidence threshold to select reliable pseudo labels from
`Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks (ICML 2013)
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.664.3543&rep=rep1&type=pdf>`_.
Args:
threshold (float): Confidence threshold.
Inputs:
- y: unnormalized classifier predictions.
- y_target: unnormalized classifier predictions which will used for generating pseudo labels.
Returns:
A tuple, including
- self_training_loss: self training loss with pseudo labels.
- mask: binary mask that indicates which samples are retained (whose confidence is above the threshold).
- pseudo_labels: generated pseudo labels.
Shape:
- y, y_target: :math:`(minibatch, C)` where C means the number of classes.
- self_training_loss: scalar.
- mask, pseudo_labels :math:`(minibatch, )`.
"""
def __init__(self, threshold: float):
super(ConfidenceBasedSelfTrainingLoss, self).__init__()
self.threshold = threshold
def forward(self, y, y_target):
confidence, pseudo_labels = F.softmax(y_target.detach(), dim=1).max(dim=1)
mask = (confidence > self.threshold).float()
self_training_loss = (F.cross_entropy(y, pseudo_labels, reduction='none') * mask).mean()
return self_training_loss, mask, pseudo_labels