-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmean_teacher.py
90 lines (69 loc) · 3.01 KB
/
mean_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import copy
from typing import Optional
import torch
def set_requires_grad(net, requires_grad=False):
"""
Set requires_grad=False for all the parameters to avoid unnecessary computations
"""
for param in net.parameters():
param.requires_grad = requires_grad
class EMATeacher(object):
r"""
Exponential moving average model from `Mean teachers are better role models: Weight-averaged consistency targets
improve semi-supervised deep learning results (NIPS 2017) <https://arxiv.org/abs/1703.01780>`_
We use :math:`\theta_t'` to denote parameters of the teacher model at training step t, use :math:`\theta_t` to
denote parameters of the student model at training step t. Given decay factor :math:`\alpha`,
we update the teacher model in an exponential moving average manner
.. math::
\theta_t'=\alpha \theta_{t-1}' + (1-\alpha)\theta_t
Args:
model (torch.nn.Module): the student model
alpha (float): decay factor for EMA.
Inputs:
x (tensor): input tensor
Examples::
>>> classifier = ImageClassifier(backbone, num_classes=31, bottleneck_dim=256).to(device)
>>> # initialize teacher model
>>> teacher = EMATeacher(classifier, 0.9)
>>> num_iterations = 1000
>>> for _ in range(num_iterations):
>>> # x denotes input of one mini-batch
>>> # you can get teacher model's output by teacher(x)
>>> y_teacher = teacher(x)
>>> # when you want to update teacher, you should call teacher.update()
>>> teacher.update()
"""
def __init__(self, model, alpha):
self.model = model
self.alpha = alpha
self.teacher = copy.deepcopy(model)
set_requires_grad(self.teacher, False)
def set_alpha(self, alpha: float):
assert alpha >= 0
self.alpha = alpha
def update(self):
for teacher_param, param in zip(self.teacher.parameters(), self.model.parameters()):
teacher_param.data = self.alpha * teacher_param + (1 - self.alpha) * param
def __call__(self, x: torch.Tensor):
return self.teacher(x)
def train(self, mode: Optional[bool] = True):
self.teacher.train(mode)
def eval(self):
self.train(False)
def state_dict(self):
return self.teacher.state_dict()
def load_state_dict(self, state_dict):
self.teacher.load_state_dict(state_dict)
@property
def module(self):
return self.teacher.module
def update_bn(model, ema_model):
"""
Replace batch normalization statistics of the teacher model with that ot the student model
"""
for m2, m1 in zip(ema_model.named_modules(), model.named_modules()):
if ('bn' in m2[0]) and ('bn' in m1[0]):
bn2, bn1 = m2[1].state_dict(), m1[1].state_dict()
bn2['running_mean'].data.copy_(bn1['running_mean'].data)
bn2['running_var'].data.copy_(bn1['running_var'].data)
bn2['num_batches_tracked'].data.copy_(bn1['num_batches_tracked'].data)