-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
390 lines (332 loc) · 14.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
@author: Baixu Chen
@contact: [email protected]
"""
import copy
import random
import sys
import time
import timm
import tqdm
import torch
import torch.nn as nn
import torchvision.transforms as T
import torch.nn.functional as F
import numpy as np
from torch.utils.data import Sampler, Subset, ConcatDataset
sys.path.append('../../..')
from tllib.modules import Classifier as ClassifierBase
import tllib.vision.datasets as datasets
import tllib.vision.models as models
import tllib.normalization.ibn as ibn_models
from tllib.vision.transforms import ResizeImage
from tllib.utils.metric import accuracy
from tllib.utils.meter import AverageMeter, ProgressMeter
def get_model_names():
return sorted(name for name in models.__dict__ if
name.islower() and not name.startswith("__") and callable(models.__dict__[name])) + \
sorted(name for name in ibn_models.__dict__ if
name.islower() and not name.startswith("__") and callable(ibn_models.__dict__[name])) + \
timm.list_models()
def get_model(model_name):
if model_name in models.__dict__:
# load models from tllib.vision.models
backbone = models.__dict__[model_name](pretrained=True)
elif model_name in ibn_models.__dict__:
# load models (with ibn) from tllib.normalization.ibn
backbone = ibn_models.__dict__[model_name](pretrained=True)
else:
# load models from pytorch-image-models
backbone = timm.create_model(model_name, pretrained=True)
try:
backbone.out_features = backbone.get_classifier().in_features
backbone.reset_classifier(0, '')
except:
backbone.out_features = backbone.head.in_features
backbone.head = nn.Identity()
return backbone
def get_dataset_names():
return sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
class ConcatDatasetWithDomainLabel(ConcatDataset):
"""ConcatDataset with domain label"""
def __init__(self, *args, **kwargs):
super(ConcatDatasetWithDomainLabel, self).__init__(*args, **kwargs)
self.index_to_domain_id = {}
domain_id = 0
start = 0
for end in self.cumulative_sizes:
for idx in range(start, end):
self.index_to_domain_id[idx] = domain_id
start = end
domain_id += 1
def __getitem__(self, index):
img, target = super(ConcatDatasetWithDomainLabel, self).__getitem__(index)
domain_id = self.index_to_domain_id[index]
return img, target, domain_id
def get_dataset(dataset_name, root, task_list, split='train', download=True, transform=None, seed=0):
assert split in ['train', 'val', 'test']
# load datasets from tllib.vision.datasets
# currently only PACS, OfficeHome and DomainNet are supported
supported_dataset = ['PACS', 'OfficeHome', 'DomainNet']
assert dataset_name in supported_dataset
dataset = datasets.__dict__[dataset_name]
train_split_list = []
val_split_list = []
test_split_list = []
# we follow DomainBed and split each dataset randomly into two parts, with 80% samples and 20% samples
# respectively, the former (larger) will be used as training set, and the latter will be used as validation set.
split_ratio = 0.8
num_classes = 0
# under domain generalization setting, we use all samples in target domain as test set
for task in task_list:
if dataset_name == 'PACS':
all_split = dataset(root=root, task=task, split='all', download=download, transform=transform)
num_classes = all_split.num_classes
elif dataset_name == 'OfficeHome':
all_split = dataset(root=root, task=task, download=download, transform=transform)
num_classes = all_split.num_classes
elif dataset_name == 'DomainNet':
train_split = dataset(root=root, task=task, split='train', download=download, transform=transform)
test_split = dataset(root=root, task=task, split='test', download=download, transform=transform)
num_classes = train_split.num_classes
all_split = ConcatDataset([train_split, test_split])
train_split, val_split = split_dataset(all_split, int(len(all_split) * split_ratio), seed)
train_split_list.append(train_split)
val_split_list.append(val_split)
test_split_list.append(all_split)
train_dataset = ConcatDatasetWithDomainLabel(train_split_list)
val_dataset = ConcatDatasetWithDomainLabel(val_split_list)
test_dataset = ConcatDatasetWithDomainLabel(test_split_list)
dataset_dict = {
'train': train_dataset,
'val': val_dataset,
'test': test_dataset
}
return dataset_dict[split], num_classes
def split_dataset(dataset, n, seed=0):
"""
Return a pair of datasets corresponding to a random split of the given
dataset, with n data points in the first dataset and the rest in the last,
using the given random seed
"""
assert (n <= len(dataset))
idxes = list(range(len(dataset)))
np.random.RandomState(seed).shuffle(idxes)
subset_1 = idxes[:n]
subset_2 = idxes[n:]
return Subset(dataset, subset_1), Subset(dataset, subset_2)
def validate(val_loader, model, args, device) -> float:
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target, _) in enumerate(val_loader):
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = F.cross_entropy(output, target)
# measure accuracy and record loss
acc1 = accuracy(output, target)[0]
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc@1 {top1.avg:.3f} '.format(top1=top1))
return top1.avg
def get_train_transform(resizing='default', random_horizontal_flip=True, random_color_jitter=True,
random_gray_scale=True):
"""
resizing mode:
- default: random resized crop with scale factor(0.7, 1.0) and size 224;
- cen.crop: take the center crop of 224;
- res.|cen.crop: resize the image to 256 and take the center crop of size 224;
- res: resize the image to 224;
- res2x: resize the image to 448;
- res.|crop: resize the image to 256 and take a random crop of size 224;
- res.sma|crop: resize the image keeping its aspect ratio such that the
smaller side is 256, then take a random crop of size 224;
– inc.crop: “inception crop” from (Szegedy et al., 2015);
– cif.crop: resize the image to 224, zero-pad it by 28 on each side, then take a random crop of size 224.
"""
if resizing == 'default':
transform = T.RandomResizedCrop(224, scale=(0.7, 1.0))
elif resizing == 'cen.crop':
transform = T.CenterCrop(224)
elif resizing == 'res.|cen.crop':
transform = T.Compose([
ResizeImage(256),
T.CenterCrop(224)
])
elif resizing == 'res':
transform = ResizeImage(224)
elif resizing == 'res2x':
transform = ResizeImage(448)
elif resizing == 'res.|crop':
transform = T.Compose([
T.Resize((256, 256)),
T.RandomCrop(224)
])
elif resizing == "res.sma|crop":
transform = T.Compose([
T.Resize(256),
T.RandomCrop(224)
])
elif resizing == 'inc.crop':
transform = T.RandomResizedCrop(224)
elif resizing == 'cif.crop':
transform = T.Compose([
T.Resize((224, 224)),
T.Pad(28),
T.RandomCrop(224),
])
else:
raise NotImplementedError(resizing)
transforms = [transform]
if random_horizontal_flip:
transforms.append(T.RandomHorizontalFlip())
if random_color_jitter:
transforms.append(T.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3))
if random_gray_scale:
transforms.append(T.RandomGrayscale())
transforms.extend([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return T.Compose(transforms)
def get_val_transform(resizing='default'):
"""
resizing mode:
- default: resize the image to 224;
- res2x: resize the image to 448;
- res.|cen.crop: resize the image to 256 and take the center crop of size 224;
"""
if resizing == 'default':
transform = ResizeImage(224)
elif resizing == 'res2x':
transform = ResizeImage(448)
elif resizing == 'res.|cen.crop':
transform = T.Compose([
ResizeImage(256),
T.CenterCrop(224),
])
else:
raise NotImplementedError(resizing)
return T.Compose([
transform,
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def collect_feature(data_loader, feature_extractor: nn.Module, device: torch.device,
max_num_features=None) -> torch.Tensor:
"""
Fetch data from `data_loader`, and then use `feature_extractor` to collect features. This function is
specific for domain generalization because each element in data_loader is a tuple
(images, labels, domain_labels).
Args:
data_loader (torch.utils.data.DataLoader): Data loader.
feature_extractor (torch.nn.Module): A feature extractor.
device (torch.device)
max_num_features (int): The max number of features to return
Returns:
Features in shape (min(len(data_loader), max_num_features * mini-batch size), :math:`|\mathcal{F}|`).
"""
feature_extractor.eval()
all_features = []
with torch.no_grad():
for i, (images, target, domain_labels) in enumerate(tqdm.tqdm(data_loader)):
if max_num_features is not None and i >= max_num_features:
break
images = images.to(device)
feature = feature_extractor(images).cpu()
all_features.append(feature)
return torch.cat(all_features, dim=0)
class ImageClassifier(ClassifierBase):
"""ImageClassifier specific for reproducing results of `DomainBed <https://github.com/facebookresearch/DomainBed>`_.
You are free to freeze all `BatchNorm2d` layers and insert one additional `Dropout` layer, this can achieve better
results for some datasets like PACS but may be worse for others.
Args:
backbone (torch.nn.Module): Any backbone to extract features from data
num_classes (int): Number of classes
freeze_bn (bool, optional): whether to freeze all `BatchNorm2d` layers. Default: False
dropout_p (float, optional): dropout ratio for additional `Dropout` layer, this layer is only used when `freeze_bn` is True. Default: 0.1
"""
def __init__(self, backbone: nn.Module, num_classes: int, freeze_bn=False, dropout_p=0.1, **kwargs):
super(ImageClassifier, self).__init__(backbone, num_classes, **kwargs)
self.freeze_bn = freeze_bn
if freeze_bn:
self.feature_dropout = nn.Dropout(p=dropout_p)
def forward(self, x: torch.Tensor):
f = self.pool_layer(self.backbone(x))
f = self.bottleneck(f)
if self.freeze_bn:
f = self.feature_dropout(f)
predictions = self.head(f)
if self.training:
return predictions, f
else:
return predictions
def train(self, mode=True):
super(ImageClassifier, self).train(mode)
if self.freeze_bn:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
class RandomDomainSampler(Sampler):
r"""Randomly sample :math:`N` domains, then randomly select :math:`K` samples in each domain to form a mini-batch of
size :math:`N\times K`.
Args:
data_source (ConcatDataset): dataset that contains data from multiple domains
batch_size (int): mini-batch size (:math:`N\times K` here)
n_domains_per_batch (int): number of domains to select in a single mini-batch (:math:`N` here)
"""
def __init__(self, data_source: ConcatDataset, batch_size: int, n_domains_per_batch: int):
super(Sampler, self).__init__()
self.n_domains_in_dataset = len(data_source.cumulative_sizes)
self.n_domains_per_batch = n_domains_per_batch
assert self.n_domains_in_dataset >= self.n_domains_per_batch
self.sample_idxes_per_domain = []
start = 0
for end in data_source.cumulative_sizes:
idxes = [idx for idx in range(start, end)]
self.sample_idxes_per_domain.append(idxes)
start = end
assert batch_size % n_domains_per_batch == 0
self.batch_size_per_domain = batch_size // n_domains_per_batch
self.length = len(list(self.__iter__()))
def __iter__(self):
sample_idxes_per_domain = copy.deepcopy(self.sample_idxes_per_domain)
domain_idxes = [idx for idx in range(self.n_domains_in_dataset)]
final_idxes = []
stop_flag = False
while not stop_flag:
selected_domains = random.sample(domain_idxes, self.n_domains_per_batch)
for domain in selected_domains:
sample_idxes = sample_idxes_per_domain[domain]
if len(sample_idxes) < self.batch_size_per_domain:
selected_idxes = np.random.choice(sample_idxes, self.batch_size_per_domain, replace=True)
else:
selected_idxes = random.sample(sample_idxes, self.batch_size_per_domain)
final_idxes.extend(selected_idxes)
for idx in selected_idxes:
if idx in sample_idxes_per_domain[domain]:
sample_idxes_per_domain[domain].remove(idx)
remaining_size = len(sample_idxes_per_domain[domain])
if remaining_size < self.batch_size_per_domain:
stop_flag = True
return iter(final_idxes)
def __len__(self):
return self.length