-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcc_loss.sh
83 lines (73 loc) · 11.9 KB
/
cc_loss.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env bash
# ResNet50, Office31, Single Source
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office31 -d Office31 -s A -t W -a resnet50 --epochs 20 -i 500 --seed 2 --bottleneck-dim 1024 --log logs/cc_loss/Office31_A2W
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office31 -d Office31 -s D -t W -a resnet50 --epochs 20 -i 500 --seed 2 --bottleneck-dim 1024 --log logs/cc_loss/Office31_D2W
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office31 -d Office31 -s W -t D -a resnet50 --epochs 20 -i 500 --seed 2 --bottleneck-dim 1024 --log logs/cc_loss/Office31_W2D
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office31 -d Office31 -s A -t D -a resnet50 --epochs 20 -i 500 --seed 2 --bottleneck-dim 1024 --log logs/cc_loss/Office31_A2D
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office31 -d Office31 -s D -t A -a resnet50 --epochs 20 -i 500 --seed 2 --bottleneck-dim 1024 --log logs/cc_loss/Office31_D2A
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office31 -d Office31 -s W -t A -a resnet50 --epochs 20 -i 500 --seed 2 --bottleneck-dim 1024 --log logs/cc_loss/Office31_W2A
# ResNet50, Office-Home, Single Source
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar -t Cl -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Ar2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar -t Pr -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Ar2Pr
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar -t Rw -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Ar2Rw
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl -t Ar -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Cl2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl -t Pr -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Cl2Pr
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl -t Rw -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Cl2Rw
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Pr -t Ar -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Pr2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Pr -t Cl -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Pr2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Pr -t Rw -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Pr2Rw
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Rw -t Ar -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Rw2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Rw -t Cl -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Rw2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Rw -t Pr -a resnet50 --epochs 30 --seed 0 --bottleneck-dim 2048 --log logs/cc_loss/OfficeHome_Rw2Pr
# ResNet101, VisDA-2017, Single Source
CUDA_VISIBLE_DEVICES=5 python cc_loss.py data/visda-2017 -d VisDA2017 -s Synthetic -t Real -a resnet101 \
--epochs 30 --seed 0 --lr 0.002 --per-class-eval --temperature 3.0 --train-resizing cen.crop --log logs/cc_loss/VisDA2017
# ResNet101, DomainNet, Single Source
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c -t p -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_c2p
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c -t r -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_c2r
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c -t s -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_c2s
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s p -t c -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_p2c
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s p -t r -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_p2r
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s p -t s -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_p2s
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s r -t c -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_r2c
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s r -t p -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_r2p
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s r -t s -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_r2s
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s s -t c -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_s2c
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s s -t p -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_s2p
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s s -t r -a resnet101 --epochs 30 -b 32 -i 2500 -p 500 --temperature 2.0 --lr 0.005 --bottleneck-dim 2048 --trade-off 10.0 --seed 0 --log logs/cc_loss/DomainNet_s2r
# ResNet50, ImageNet200 -> ImageNetR
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/ImageNetR -d ImageNetR -s IN -t INR -a resnet50 --epochs 30 --seed 0 --temperature 2.5 --bottleneck-dim 2048 --log logs/cc_loss/ImageNet_IN2INR
# ig_resnext101_32x8d, ImageNet -> ImageNetSketch
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/imagenet-sketch -d ImageNetSketch -s IN -t sketch -a ig_resnext101_32x8d --epochs 30 -i 2500 -p 500 --log logs/cc_loss_ig_resnext101_32x8d/ImageNet_IN2sketch
# Vision Transformer, Office-Home, Single Source
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar -t Cl -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Ar2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar -t Pr -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Ar2Pr
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar -t Rw -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Ar2Rw
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl -t Ar -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Cl2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl -t Pr -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Cl2Pr
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl -t Rw -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Cl2Rw
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Pr -t Ar -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Pr2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Pr -t Cl -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Pr2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Pr -t Rw -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Pr2Rw
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Rw -t Ar -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Rw2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Rw -t Cl -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Rw2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Rw -t Pr -a vit_base_patch16_224 --no-pool --bottleneck-dim 2048 --epochs 30 --seed 0 -b 24 --log logs/cc_loss_vit/OfficeHome_Rw2Pr
# ResNet50, Office-Home, Multi Source
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Cl Pr Rw -t Ar -a resnet50 --bottleneck-dim 2048 --epochs 30 --seed 0 --log logs/cc_loss/OfficeHome_:2Ar
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar Pr Rw -t Cl -a resnet50 --bottleneck-dim 2048 --epochs 30 --seed 0 --log logs/cc_loss/OfficeHome_:2Cl
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar Cl Rw -t Pr -a resnet50 --bottleneck-dim 2048 --epochs 30 --seed 0 --log logs/cc_loss/OfficeHome_:2Pr
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/office-home -d OfficeHome -s Ar Cl Pr -t Rw -a resnet50 --bottleneck-dim 2048 --epochs 30 --seed 0 --log logs/cc_loss/OfficeHome_:2Rw
# ResNet101, DomainNet, Multi Source
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s i p q r s -t c -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cc_loss/DomainNet_:2c
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c p q r s -t i -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cc_loss/DomainNet_:2i
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c i q r s -t p -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cc_loss/DomainNet_:2p
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c i p r s -t q -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cc_loss/DomainNet_:2q
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c i p q s -t r -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cc_loss/DomainNet_:2r
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cc_loss/DomainNet_:2s
# Digits
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/cc_loss/MNIST2USPS
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/cc_loss/USPS2MNIST
CUDA_VISIBLE_DEVICES=0 python cc_loss.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/cc_loss/SVHN2MNIST