-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
187 lines (167 loc) · 7.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# *_*coding:utf-8 *_*
import os
import time
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import utils
def train_model(model, data_loader, params):
# data loader
train_loader, val_loader, test_loader = data_loader['train'], data_loader['devel'], data_loader['test']
# criterion
if params.loss == 'ccc':
criterion = utils.CCCLoss()
elif params.loss == 'mse':
criterion = utils.MSELoss()
elif params.loss == 'l1':
criterion = utils.L1Loss()
else:
raise Exception(f'Not supported loss "{params.loss}".')
# optimizer
optimizer = optim.Adam(model.parameters(), lr=params.lr, weight_decay=params.l2_penalty)
# lr scheduler
if params.lr_scheduler == 'step':
lr_scheduler = optim.lr_scheduler.StepLR(optimizer=optimizer,step_size=params.lr_patience,
gamma=params.lr_factor)
else:
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='min',
patience=params.lr_patience,
factor=params.lr_factor,
min_lr=params.min_lr, verbose=True)
# train
best_val_loss = float('inf')
best_val_ccc, best_val_pcc, best_val_rmse = [], [], []
best_mean_val_ccc = 0
best_model_file = ''
early_stop = 0
for epoch in range(1, params.epochs + 1):
print('='*50)
train_loss = train(model, train_loader, criterion, optimizer, epoch, params)
val_loss, val_ccc, val_pcc, val_rmse = validate(model, val_loader, criterion, params)
mean_val_ccc, mean_val_pcc, mean_val_rmse = np.mean(val_ccc), np.mean(val_pcc), np.mean(val_rmse)
print('-' * 50)
print(f'Epoch:{epoch:>3} | [Train] | Loss: {train_loss:>.4f}')
print(f'Epoch:{epoch:>3} | [Val] | Loss: {val_loss:>.4f} | '
f'[CCC]: {mean_val_ccc:>7.4f} {[format(x, "7.4f") for x in val_ccc]} | '
f'PCC: {mean_val_pcc:>.4f} {[format(x, ".4f") for x in val_pcc]} | '
f'RMSE: {mean_val_rmse:>.4f} {[format(x, ".4f") for x in val_rmse]}')
if mean_val_ccc > best_mean_val_ccc:
best_val_ccc = val_ccc
best_mean_val_ccc = np.mean(best_val_ccc)
best_model_file = utils.save_model(model, params)
print(f'Epoch:{epoch:>3} | Save best model "{best_model_file}"!')
best_val_loss, best_val_pcc, best_val_rmse = val_loss, val_pcc, val_rmse # Note: loss, pcc and rmse when get best val ccc
early_stop = 0
else:
early_stop += 1
if early_stop >= params.early_stop:
print(f'Note: target can not be optimized for {params.early_stop} consecutive epochs, early stop the training process!')
break
if params.lr_scheduler == 'step':
lr_scheduler.step()
else:
lr_scheduler.step(1 - np.mean(val_ccc))
best_mean_val_pcc, best_mean_val_rmse = np.mean(best_val_pcc), np.mean(best_val_rmse)
print('='*50)
print(f'Best [Val CCC]:{best_mean_val_ccc:>7.4f} {[format(x, "7.4f") for x in best_val_ccc]}| '
f'Loss: {best_val_loss:>.4f} | '
f'PCC: {best_mean_val_pcc:>.4f} {[format(x, ".4f") for x in best_val_pcc]} | '
f'RMSE: {best_mean_val_rmse:>.4f} {[format(x, ".4f") for x in best_val_rmse]}')
print('='*50)
# predict: val & test
if params.save:
print('Predict val & test videos...')
best_model = torch.load(best_model_file)
predict(best_model, val_loader, params)
predict(best_model, test_loader, params)
else:
utils.delete_model(best_model_file)
return best_val_loss, best_val_ccc, best_val_pcc, best_val_rmse
def train(model, train_loader, criterion, optimizer, epoch, params):
model.train()
start_time = time.time()
report_loss, report_size = 0, 0
total_loss, total_size = 0, 0
for batch, batch_data in enumerate(train_loader, 1):
features, feature_lens, labels, metas = batch_data
batch_size = features.size(0)
# move to gpu if use gpu
if params.gpu != None:
os.environ['CUDA_VISIBLE_DEVICES'] = params.gpu
device = torch.device(f"cuda: {params.gpu}")
model.cuda(device)
features = features.cuda(device)
feature_lens = feature_lens.cuda(device)
labels = labels.cuda(device)
optimizer.zero_grad()
preds = model(features, feature_lens)
# cal loss
loss = 0.0
for i in range(len(params.loss_weights)):
branch_loss = criterion(preds[:, :, i], labels[:, :, i], feature_lens, params.label_smooth)
loss = loss + params.loss_weights[i] * branch_loss
loss.backward()
if params.clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), max_norm=params.clip)
optimizer.step()
total_loss += loss.item() * batch_size
total_size += batch_size
report_loss += loss.item() * batch_size
report_size += batch_size
if batch % params.log_interval == 0:
avg_loss = report_loss / report_size
elapsed_time = time.time() - start_time
print(f"Epoch:{epoch:>3} | Batch: {batch:>3} | Lr: {optimizer.state_dict()['param_groups'][0]['lr']:>1.5f} | "
f"Time used(s): {elapsed_time:>.1f} | Training loss: {avg_loss:>.4f}")
report_loss, report_size, start_time = 0, 0, time.time()
train_loss = total_loss / total_size
return train_loss
def validate(model, val_loader, criterion, params):
model.eval()
full_preds, full_labels = [], []
with torch.no_grad():
val_loss = 0
val_size = 0
for batch, batch_data in enumerate(val_loader, 1):
features, feature_lens, labels, _ = batch_data
batch_size = features.size(0)
# move to gpu if use gpu
if params.gpu != None:
os.environ['CUDA_VISIBLE_DEVICES'] = params.gpu
device = torch.device(f"cuda: {params.gpu}")
model.cuda(device)
features = features.cuda(device)
feature_lens = feature_lens.cuda(device)
labels = labels.cuda(device)
preds = model(features, feature_lens)
# cal loss
loss = 0.0
for i in range(len(params.loss_weights)):
branch_loss = criterion(preds[:, :, i], labels[:, :, i], feature_lens, params.label_smooth)
loss = loss + params.loss_weights[i] * branch_loss
val_loss += loss.item() * batch_size
val_size += batch_size
full_preds.append(preds.cpu().detach().squeeze(0).numpy())
full_labels.append(labels.cpu().detach().squeeze(0).numpy())
val_loss /= val_size
val_ccc, val_pcc, val_rmse = utils.eval(full_preds, full_labels)
return val_loss, val_ccc, val_pcc, val_rmse
def predict(model, data_loader, params):
model.eval()
full_preds, full_metas = [], []
with torch.no_grad():
for batch, batch_data in enumerate(data_loader, 1):
features, feature_lens, _, metas = batch_data
# move to gpu if use gpu
if params.gpu != None:
os.environ['CUDA_VISIBLE_DEVICES'] = params.gpu
device = torch.device(f"cuda: {params.gpu}")
model.cuda(device)
features = features.cuda(device)
feature_lens = feature_lens.cuda(device)
preds = model(features, feature_lens)
full_preds.append(preds.cpu().detach().squeeze(0).numpy())
full_metas.append(metas.detach().squeeze(0).numpy())
partition = data_loader.dataset.partition
utils.write_model_prediction(full_metas, full_preds, params, partition=partition)