-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstack_forward.py
275 lines (200 loc) · 7.38 KB
/
stack_forward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from category_encoders import *
from scipy import stats
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import RidgeClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
import scipy
import lightgbm as lgb
from sklearn.metrics import accuracy_score
from sklearn.model_selection import StratifiedKFold,KFold
import pickle
import logging
LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
import os
os.environ['NUMEXPR_MAX_THREADS'] = '32'
import pandas as pd
import numpy as np
from tqdm import tqdm
from sklearn.metrics import confusion_matrix
import IPython.display as ipd
from sklearn.metrics import accuracy_score
from sklearn.model_selection import StratifiedKFold,KFold
import pandas as pd
import numpy as np
import copy
from scipy.special import softmax
from torchcontrib.optim import SWA
# In[2]:
# import os
# paths = []
# names = []
# target_dir = './var/model_ret_dicts/hyr/'
# for filename in os.listdir(target_dir):
# if(filename[0] == '.'):
# continue
# paths.append(target_dir + filename)
# names.append(filename)
# target_dir = './var/model_ret_dicts/fjw/'
# for filename in os.listdir(target_dir):
# if(filename[0] == '.') :
# continue
# paths.append(target_dir + filename)
# names.append(filename)
# names = list(map(lambda x : x.replace('model_', '') ,names))
# In[3]:
# model_ret_dicts = []
# logging.info("loading feature...")
# for p in paths:
# ret = pickle.load(open(p, 'rb'))
# model_ret_dicts.append(ret)
# logging.info("loading finished...")
# In[4]:
# test_x = np.zeros((1000000, 12 * len(model_ret_dicts))).astype('float32')
# for i in range(len(model_ret_dicts)):
# test_x[:, i*12:i*12+2] = model_ret_dicts[i]['test_gender']
# test_x[:, i*12+2:i*12+12] = model_ret_dicts[i]['test_age']
# In[6]:
# class_20_test_np = np.load('./var/model_ret_dicts/class20_test.npy')
# test_x = np.concatenate([test_x, class_20_test_np], axis=1)
# test_x.shape
# In[2]:
from collections import namedtuple
import torch
import torch.nn.functional as F
import torch.utils.data as Data
from transformers import *
import torch.nn as nn
# In[3]:
test_x=np.load("./var/test_x.npy")
# In[4]:
ARG = namedtuple('ARG', [
'batch_size',
'epoch',
'lr',
'weight_decay',
'n_worker',
'device',
'n_fold'
])
args = ARG(
batch_size = 1024,
epoch = 10,
lr = 0.005,
weight_decay = 0.1,
n_worker = 0,
n_fold = 5,
device=torch.device("cuda:3"),
# device=torch.device("cpu"),
)
# In[12]:
class GeLU(nn.Module):
def forward(self, x):
return 0.5 * x * (1. + torch.tanh(x * 0.7978845608 * (1. + 0.044715 * x * x)))
class Dense(nn.Module):
def __init__(self):
super().__init__()
in_feature = 12 * 32+20
hidden = 324
out_feature = 256
self.dense = nn.Sequential(
nn.Linear(in_feature, hidden),
nn.Tanh(),
nn.Linear(hidden, out_feature),
)
self.decode_gender = nn.Linear(out_feature, 2)
self.decode_age = nn.Linear(out_feature, 10)
def forward(self, x, gender = None, age = None):
hidden = self.dense(x)
output_gender = self.decode_gender(hidden)
output_age = self.decode_age(hidden)
if gender is None:
return output_gender, output_age
ce = nn.CrossEntropyLoss()
loss_gender = ce(output_gender, gender.long())
loss_age = ce(output_age, age.long())
loss = loss_gender + loss_age
return loss, loss_gender, loss_age, output_gender, output_age
# In[13]:
def swa(logger, model, model_dir, model_path_list, swa_start):
"""
:param logger: ...
:param model: ...
:param model_dir: ...
:param model_path_list: this model path list should be increased by steps
:param swa_start: the epoch when averaging begins. (start with 0)
:return: model path list extend with swa model
"""
assert 1 < swa_start <= len(model_path_list) - 1, f'Using swa, swa start should smaller than {len(model_path_list) - 1} and bigger than 1'
swa_model = copy.deepcopy(model)
swa_n = 0.
with torch.no_grad():
for _ckpt in model_path_list[swa_start:]:
logger.info(f'Load model from {_ckpt}')
model.load_state_dict(torch.load(os.path.join(model_dir, _ckpt, 'model.pt'),
map_location=torch.device('cpu')))
tmp_para_dict = dict(model.named_parameters())
alpha = 1. / (swa_n + 1.)
for name, para in swa_model.named_parameters():
para.copy_(tmp_para_dict[name].data.clone() * alpha + para.data.clone() * (1. - alpha))
swa_n += 1
swa_model_dir = os.path.join(model_dir, f'checkpoint-swa_start{swa_start}')
if not os.path.exists(swa_model_dir):
os.mkdir(swa_model_dir)
logger.info('Save swa model')
torch.save(swa_model.state_dict(), os.path.join(swa_model_dir, 'model.pt'))
model_path_list.append(f'checkpoint-swa_start{swa_start}')
return model_path_list
# In[14]:
output_dir="../model/"
def predict_batch_multi_task(model, train_x, batch_size = args.batch_size):
len_user_ids = len(train_x)
pre_list_gender = []
pre_list_age = []
train_dataset = Data.TensorDataset(torch.tensor(train_x).float())
data_loader = Data.DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers = args.n_worker,
)
with torch.no_grad():
model.eval()
for step, data in enumerate(tqdm(data_loader)):
pre_gender, pre_age = model(data[0].to(args.device))
pre_list_gender.append(pre_gender.cpu().detach().numpy())
pre_list_age.append(pre_age.cpu().detach().numpy())
model.train()
return {
'gender' : np.concatenate(pre_list_gender),
'age' : np.concatenate(pre_list_age),
}
test_gender = np.zeros((len(test_x), 2))
test_age = np.zeros((len(test_x), 10))
for fold in range(args.n_fold):
model=Dense().to(args.device)
model.load_state_dict(torch.load("./model/model_"+str(fold+1)+".pt"))
test_ret_dict=predict_batch_multi_task(model,test_x)
test_gender += softmax(test_ret_dict['gender'], axis=1) / args.n_fold
test_age += softmax(test_ret_dict['age'], axis=1) / args.n_fold
# In[15]:
test_gender_pre = np.argmax(test_gender, axis = 1) + 1
test_age_pre = np.argmax(test_age, axis = 1) + 1
df_submit = pd.DataFrame()
df_submit['user_id'] = list(range(3000001, 4000001))
df_submit['predicted_gender'] = test_gender_pre
df_submit['predicted_age'] = test_age_pre
df_submit.to_csv('submission.csv', index=False)