-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
527 lines (468 loc) · 22.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import os
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import cv2
import random
from typing import Dict, List, Tuple
import time
import datetime
from hi_sam.modeling.build import model_registry
from hi_sam.modeling.loss import loss_masks, loss_hi_masks, loss_iou_mse, loss_hi_iou_mse
from hi_sam.data.dataloader import get_im_gt_name_dict, create_dataloaders, train_transforms, eval_transforms, custom_collate_fn
from hi_sam.evaluation import Evaluator
import utils.misc as misc
import warnings
warnings.filterwarnings("ignore")
def get_args_parser():
parser = argparse.ArgumentParser('Hi-SAM', add_help=False)
parser.add_argument("--output", type=str, default="work_dirs/",
help="Path to the directory where masks and checkpoints will be output")
parser.add_argument("--model-type", type=str, default="vit_l",
help="The type of model to load, in ['vit_h', 'vit_l', 'vit_b']")
parser.add_argument("--checkpoint", type=str, required=True,
help="The path to the SAM checkpoint to use for mask generation.")
parser.add_argument("--device", type=str, default="cuda",
help="The device to run generation on.")
parser.add_argument("--train_datasets", type=str, nargs='+', default=['totaltext_train'])
parser.add_argument("--val_datasets", type=str, nargs='+', default=['totaltext_test'])
parser.add_argument("--hier_det", action='store_true',
help="If False, only text stroke segmentation.")
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_charac_mask_decoder_name', default=["mask_decoder"], type=str, nargs='+')
parser.add_argument('--lr_charac_mask_decoder', default=1e-4, type=float)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--lr_drop_epoch', default=70, type=int)
parser.add_argument('--max_epoch_num', default=70, type=int)
parser.add_argument('--input_size', default=[1024, 1024], type=list)
parser.add_argument('--batch_size_train', default=1, type=int)
parser.add_argument('--batch_size_valid', default=1, type=int)
parser.add_argument('--valid_period', default=1, type=int)
parser.add_argument('--model_save_fre', default=100, type=int)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--rank', default=0, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', type=int, help='local rank for dist')
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--eval', action='store_true')
# self-prompting
parser.add_argument('--attn_layers', default=1, type=int,
help='The number of image to token cross attention layers in model_aligner')
parser.add_argument('--prompt_len', default=12, type=int, help='The number of prompt token')
return parser.parse_args()
def main(train_datasets, valid_datasets, args):
misc.init_distributed_mode(args)
print('world size: {}'.format(args.world_size))
print('rank: {}'.format(args.rank))
print('local_rank: {}'.format(args.local_rank))
print("args: " + str(args) + '\n')
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
### --- Step 1: Train or Valid dataset ---
if not args.eval:
print("--- create training dataloader ---")
train_datasets_names = [train_ds["name"] for train_ds in train_datasets]
train_im_gt_list = get_im_gt_name_dict(train_datasets, flag="train")
train_dataloaders, train_datasets = create_dataloaders(
train_im_gt_list,
my_transforms=train_transforms,
batch_size=args.batch_size_train,
training=True,
hier_det=args.hier_det,
collate_fn=custom_collate_fn
)
print(len(train_dataloaders), " train dataloaders created")
print("--- create valid dataloader ---")
valid_datasets_names = [val_ds["name"] for val_ds in valid_datasets]
valid_im_gt_list = get_im_gt_name_dict(valid_datasets, flag="valid")
valid_dataloaders, valid_datasets = create_dataloaders(
valid_im_gt_list,
my_transforms=eval_transforms,
batch_size=args.batch_size_valid,
training=False
)
print(len(valid_dataloaders), " valid dataloaders created")
### --- Step 2: DistributedDataParallel---
model = model_registry[args.model_type](args=args)
if torch.cuda.is_available():
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
model_without_ddp = model.module
### --- Step 3: Train or Evaluate ---
if not args.eval:
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of trainable params: ' + str(n_parameters))
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params": [p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_charac_mask_decoder_name) and p.requires_grad],
"lr": args.lr
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, args.lr_charac_mask_decoder_name) and p.requires_grad],
"lr": args.lr_charac_mask_decoder
}
]
optimizer = optim.AdamW(param_dicts, lr=args.lr, betas=(0.9, 0.999), weight_decay=0.05)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop_epoch)
lr_scheduler.last_epoch = args.start_epoch
train(args, model, optimizer, train_dataloaders, train_datasets_names, lr_scheduler, valid_dataloaders, valid_datasets_names)
else:
print("restore model from:", args.checkpoint)
evaluate(args, model, valid_dataloaders, valid_datasets_names)
def train(args, model, optimizer, train_dataloaders, train_datasets_names, lr_scheduler, valid_dataloaders, valid_datasets_names):
if misc.is_main_process():
os.makedirs(args.output, exist_ok=True)
epoch_start = args.start_epoch
epoch_num = args.max_epoch_num
train_num = len(train_dataloaders)
best_iou = [-1 for _ in range(len(valid_datasets_names))]
model.train()
_ = model.to(device=args.device)
from torch.cuda.amp import autocast, GradScaler
gradsclaler = GradScaler()
for epoch in range(epoch_start, epoch_num):
print("epoch: ", epoch, " lr: ", optimizer.param_groups[0]["lr"])
metric_logger = misc.MetricLogger(delimiter=" ")
train_dataloaders.batch_sampler.sampler.set_epoch(epoch)
for data in metric_logger.log_every(train_dataloaders, 50):
inputs, labels = data['image'], data['label'].to(model.device) # (bs,3,1024,1024), (bs,1,1024,1024)
batched_input = []
if args.hier_det:
para_masks, line_masks, word_masks = data['paragraph_masks'], data['line_masks'], data['word_masks']
line2para_idx = data['line2paragraph_index']
fg_points, para_masks, line_masks, word_masks = misc.sample_foreground_points(labels, para_masks, line_masks, word_masks, line2para_idx)
for b_i in range(len(inputs)):
dict_input = dict()
dict_input['image'] = inputs[b_i].to(model.device).contiguous()
dict_input['original_size'] = inputs[b_i].shape[-2:]
if args.hier_det:
point_coords = fg_points[b_i][:, None, :]
dict_input['point_coords'] = point_coords
dict_input['point_labels'] = torch.ones((point_coords.shape[0], point_coords.shape[1]), device=point_coords.device)
batched_input.append(dict_input)
with autocast():
if args.hier_det:
(up_masks_logits, up_masks, iou_output, hr_masks_logits, hr_masks, hr_iou_output,
hi_masks_logits, hi_iou_output, word_masks_logits) = model(batched_input, multimask_output=False)
loss_focal, loss_dice = loss_masks(up_masks_logits, labels / 255.0, len(up_masks_logits))
loss_mse = loss_iou_mse(iou_output, up_masks, labels)
loss_lr = loss_focal * 20 + loss_dice + loss_mse
loss_focal_hr, loss_dice_hr = loss_masks(hr_masks_logits, labels / 255.0, len(up_masks_logits))
loss_mse_hr = loss_iou_mse(hr_iou_output, hr_masks, labels)
loss_hr = loss_focal_hr * 20 + loss_dice_hr + loss_mse_hr
if word_masks is not None:
loss_focal_word, loss_dice_word = loss_hi_masks(
hi_masks_logits[:, 0:1, :, :], word_masks, len(hi_masks_logits)
)
loss_focal_word_384, loss_dice_word_384 = loss_hi_masks(
word_masks_logits[:, 0:1, :, :], word_masks, len(hi_masks_logits),
)
loss_word = loss_focal_word + loss_dice_word
loss_word_384 = loss_focal_word_384 + loss_dice_word_384
loss_focal_line, loss_dice_line = loss_hi_masks(
hi_masks_logits[:, 1:2, :, :], line_masks, len(hi_masks_logits)
)
loss_mse_line = loss_hi_iou_mse(
hi_iou_output[:, 1:2], hi_masks_logits[:, 1:2, :, :], model.module.mask_threshold, line_masks
)
loss_line = loss_focal_line + loss_dice_line + loss_mse_line
loss_focal_para, loss_dice_para = loss_hi_masks(
hi_masks_logits[:, 2:3, :, :], para_masks, len(hi_masks_logits)
)
loss_mse_para = loss_hi_iou_mse(
hi_iou_output[:, 2:3], hi_masks_logits[:, 2:3, :, :], model.module.mask_threshold, para_masks
)
loss_para = loss_focal_para + loss_dice_para + loss_mse_para
loss = loss_lr + loss_hr + loss_word + loss_word_384 + loss_line + loss_para * 0.5
loss_dict = {
"loss_lr_mask": loss_lr,
"loss_hr_mask": loss_hr,
"loss_word": loss_word,
"loss_word_384": loss_word_384,
"loss_line": loss_line,
"loss_para": loss_para * 0.5
}
else:
raise NotImplementedError
else:
up_masks_logits, up_masks, iou_output, hr_masks_logits, hr_masks, hr_iou_output = model(
batched_input, multimask_output=False
)
loss_focal, loss_dice = loss_masks(up_masks_logits, labels / 255.0, len(up_masks_logits))
loss_focal_hr, loss_dice_hr = loss_masks(hr_masks_logits, labels / 255.0, len(up_masks_logits))
loss_mse = loss_iou_mse(iou_output, up_masks, labels)
loss_mse_hr = loss_iou_mse(hr_iou_output, hr_masks, labels)
loss = loss_focal * 20 + loss_dice + loss_mse + loss_focal_hr * 20 + loss_dice_hr + loss_mse_hr
loss_dict = {
"loss_iou_mse": loss_mse,
"loss_dice": loss_dice,
"loss_focal": loss_focal * 20,
"loss_iou_mse_hr": loss_mse_hr,
"loss_dice_hr": loss_dice_hr,
"loss_focal_hr": loss_focal_hr * 20,
}
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = misc.reduce_dict(loss_dict)
losses_reduced_scaled = sum(loss_dict_reduced.values())
loss_value = losses_reduced_scaled.item()
optimizer.zero_grad()
gradsclaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0, norm_type=2)
gradsclaler.step(optimizer)
gradsclaler.update()
metric_logger.update(training_loss=loss_value, **loss_dict_reduced)
metric_logger.synchronize_between_processes()
train_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items() if meter.count > 0}
if (epoch - epoch_start) % args.valid_period == 0 or (epoch + 1) == epoch_num:
if args.hier_det:
model.module.hier_det = False # disable hi_decoder temporally
test_stats = evaluate(args, model, valid_dataloaders, valid_datasets_names)
if args.hier_det:
model.module.hier_det = True
if misc.is_main_process():
for ds_idx, (ds_name, ds_results) in enumerate(test_stats.items()):
iou_result = ds_results.get('001-text-IOU')
iou_result_hs = ds_results.get('001-text-IOU_hr')
iou_result = max(iou_result, iou_result_hs)
if iou_result > best_iou[ds_idx]:
checkpoint = {
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch
}
torch.save(checkpoint, os.path.join(args.output, ds_name+"_best.pth"))
best_iou[ds_idx] = iou_result
train_stats.update(test_stats)
model.train()
lr_scheduler.step()
# Finish training
print("Training Reaches The Maximum Epoch Number")
if misc.is_main_process():
model_name = "/final_epoch_" + str(epoch_num) + ".pth"
torch.save(model.module.state_dict(), args.output + model_name)
def inference_on_dataset(model, data_loader, data_name, evaluator, args):
print("Start inference on {}, {} batches".format(data_name, len(data_loader)))
num_devices = misc.get_world_size()
total = len(data_loader)
evaluator.reset()
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_data_time = time.perf_counter()
for idx_val, data_val in enumerate(data_loader):
inputs_val, labels_ori = data_val['image'], data_val['ori_label']
ignore_mask = data_val.get('ignore_mask', None)
if torch.cuda.is_available():
labels_ori = labels_ori.cuda()
batched_input = []
for b_i in range(len(inputs_val)):
dict_input = dict()
dict_input['image'] = inputs_val[b_i].to(model.device).contiguous()
dict_input['original_size'] = labels_ori[b_i].shape[-2:]
batched_input.append(dict_input)
total_data_time += time.perf_counter() - start_data_time
if idx_val == num_warmup:
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_compute_time = time.perf_counter()
with torch.no_grad():
up_masks_logits, up_masks, iou_output, hr_masks_logits, hr_masks, hr_iou_output = model(
batched_input, multimask_output=False
)
if torch.cuda.is_available():
torch.cuda.synchronize()
total_compute_time += time.perf_counter() - start_compute_time
start_eval_time = time.perf_counter()
evaluator.process(up_masks, hr_masks, labels_ori, ignore_mask)
total_eval_time += time.perf_counter() - start_eval_time
iters_after_start = idx_val + 1 - num_warmup * int(idx_val >= num_warmup)
data_seconds_per_iter = total_data_time / iters_after_start
compute_seconds_per_iter = total_compute_time / iters_after_start
eval_seconds_per_iter = total_eval_time / iters_after_start
total_seconds_per_iter = (time.perf_counter() - start_time) / iters_after_start
if (idx_val+1) % 20 == 0:
eta = datetime.timedelta(seconds=int(total_seconds_per_iter * (total - idx_val - 1)))
print(
f"Inference done [{idx_val + 1}]/[{total}]. ",
f"Dataloading: {data_seconds_per_iter:.4f} s/iter. ",
f"Inference: {compute_seconds_per_iter:.4f} s/iter. ",
f"Eval: {eval_seconds_per_iter:.4f} s/iter. ",
f"Total: {total_seconds_per_iter:.4f} s/iter. ",
f"ETA={eta}"
)
start_data_time = time.perf_counter()
total_time = time.perf_counter() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
print(
"Total inference time: {} ({:.6f} s / iter per device, on {} devices)".format(
total_time_str, total_time / (total - num_warmup), num_devices
)
)
total_compute_time_str = str(datetime.timedelta(seconds=int(total_compute_time)))
print(
"Total inference pure compute time: {} ({:.6f} s / iter per device, on {} devices)".format(
total_compute_time_str, total_compute_time / (total - num_warmup), num_devices
)
)
results = evaluator.evaluate()
if results is None:
results = {}
return results
def evaluate(args, model, valid_dataloaders, valid_datasets_names):
model.eval()
test_stats = {}
for k in range(len(valid_dataloaders)):
metric_logger = misc.MetricLogger(delimiter=" ")
valid_dataloader = valid_dataloaders[k]
valid_dataset_name = valid_datasets_names[k]
evaluator = Evaluator(valid_dataset_name, args, True)
print('============================')
results_k = inference_on_dataset(model, valid_dataloader, valid_dataset_name, evaluator, args)
print("Evaluation results for {}:".format(valid_dataset_name))
for task, res in results_k.items():
if '_hr' not in task:
print(f"copypaste: {task}={res}, {task}_hr={results_k[task+'_hr']}")
print('============================')
test_stats.update({valid_dataset_name: results_k})
return test_stats
if __name__ == "__main__":
# train
totaltext_train = {
"name": "TotalText-train",
"im_dir": "./datasets/TotalText/Images/Train",
"gt_dir": "./datasets/TotalText/groundtruth_pixel/Train",
"im_ext": ".jpg",
"gt_ext": ".jpg",
}
hiertext_train = {
"name": "HierText-train",
"im_dir": "./datasets/HierText/train",
"gt_dir": "./datasets/HierText/train_gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"json_dir": "./datasets/HierText/train_shrink_vert.json"
}
textseg_train = {
"name": "TextSeg-train",
"im_dir": "./datasets/TextSeg/train_images",
"gt_dir": "./datasets/TextSeg/train_gt",
"im_ext": ".jpg",
"gt_ext": ".png"
}
cocots_train = {
"name": "COCO_TS-train",
"im_dir": "./datasets/COCO_TS/train_images",
"gt_dir": "./datasets/COCO_TS/COCO_TS_labels",
"im_ext": ".jpg",
"gt_ext": ".png"
}
cocots_train_hier = {
"name": "COCO_TS-train",
"im_dir": "./datasets/COCO_TS/train_images",
"gt_dir": "./datasets/COCO_TS/hier-model_labels",
"im_ext": ".jpg",
"gt_ext": ".png"
}
cocots_train_tt = {
"name": "COCO_TS-train",
"im_dir": "./datasets/COCO_TS/train_images",
"gt_dir": "./datasets/COCO_TS/tt-model_labels",
"im_ext": ".jpg",
"gt_ext": ".png"
}
cocots_train_textseg = {
"name": "COCO_TS-train",
"im_dir": "./datasets/COCO_TS/train_images",
"gt_dir": "./datasets/COCO_TS/textseg-model_labels",
"im_ext": ".jpg",
"gt_ext": ".png"
}
train_dataset_map = {
'totaltext_train': totaltext_train,
'hiertext_train': hiertext_train,
'textseg_train': textseg_train,
'cocots_train': cocots_train,
'cocots_train_hier': cocots_train_hier,
'cocots_train_tt': cocots_train_tt,
'cocots_train_textseg': cocots_train_textseg,
}
# validation and test
totaltext_test = {
"name": "TotalText-test",
"im_dir": "./datasets/TotalText/Images/Test",
"gt_dir": "./datasets/TotalText/groundtruth_pixel/Test",
"im_ext": ".jpg",
"gt_ext": ".jpg"
}
hiertext_val = {
"name": "HierText-val",
"im_dir": "./datasets/HierText/validation",
"gt_dir": "./datasets/HierText/validation_gt",
"im_ext": ".jpg",
"gt_ext": ".png"
}
hiertext_test = {
"name": "HierText-test",
"im_dir": "./datasets/HierText/test",
"gt_dir": "./datasets/HierText/test_gt",
"im_ext": ".jpg",
"gt_ext": ".png"
}
textseg_val = {
"name": "TextSeg-val",
"im_dir": "./datasets/TextSeg/val_images",
"gt_dir": "./datasets/TextSeg/val_gt",
"im_ext": ".jpg",
"gt_ext": ".png"
}
textseg_test = {
"name": "TextSeg-test",
"im_dir": "./datasets/TextSeg/test_images",
"gt_dir": "./datasets/TextSeg/test_gt",
"im_ext": ".jpg",
"gt_ext": ".png"
}
val_dataset_map = {
'totaltext_test': totaltext_test,
'hiertext_val': hiertext_val,
'hiertext_test': hiertext_test,
'textseg_val': textseg_val,
'textseg_test': textseg_test,
}
train_datasets = []
val_datasets = []
args = get_args_parser()
for ds_name in args.train_datasets:
train_datasets.append(train_dataset_map[ds_name])
for ds_name in args.val_datasets:
val_datasets.append(val_dataset_map[ds_name])
main(train_datasets, val_datasets, args)