forked from GENTEL-lab/EnzymeCAGE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
132 lines (98 loc) · 4.96 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import argparse
import pandas as pd
from tqdm import tqdm
import torch
from torch_geometric.loader import DataLoader
from config import Config
from enzymecage.model import EnzymeCAGE
from enzymecage.baseline import Baseline
from enzymecage.dataset.geometric import load_geometric_dataset
from enzymecage.dataset.baseline import load_baseline_dataset
from utils import seed_everything
def preprocess_infer_data(data_path):
df_data = pd.read_csv(data_path)
if 'uniprotID' not in df_data.columns and 'enzyme' in df_data.columns:
df_data['uniprotID'] = df_data['enzyme']
if 'CANO_RXN_SMILES' not in df_data.columns and 'reaction' in df_data.columns:
df_data['CANO_RXN_SMILES'] = df_data['reaction']
if 'Label' not in df_data.columns:
df_data['Label'] = 0
df_data.to_csv(data_path, index=False)
def inference(model_conf):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if model_conf.model == 'EnzymeCAGE':
follow_batch = ['protein', 'reaction_feature', 'esm_feature', 'substrates', 'products']
model = EnzymeCAGE(
use_esm=model_conf.use_esm,
use_structure=model_conf.use_structure,
use_drfp=model_conf.use_drfp,
use_prods_info=model_conf.use_prods_info,
interaction_method=model_conf.interaction_method,
rxn_inner_interaction=model_conf.rxn_inner_interaction,
device=device
)
print('Model save dir: ', model_conf.ckpt_dir)
protein_gvp_feat = torch.load(model_conf.protein_gvp_feat)
esm_node_feature = torch.load(model_conf.esm_node_feature)
infer_dataset = load_geometric_dataset(model_conf.data_path,
protein_gvp_feat,
model_conf.rxn_fp,
model_conf.mol_conformation,
esm_node_feature,
model_conf.esm_mean_feature,
model_conf.reaction_center)
elif model_conf.model == 'baseline':
follow_batch = ['reaction_feature', 'esm_feature']
model = Baseline(device=device)
# model = Baseline(device=device)
model_conf.ckpt_dir = model_conf.ckpt_dir
print('Model save dir: ', model_conf.ckpt_dir)
infer_dataset = load_baseline_dataset(model_conf.data_path, model_conf.rxn_fp, model_conf.esm_mean_feature)
df_data = pd.read_csv(model_conf.data_path)
# if 'uniprotID' not in df_data.columns and 'enzyme' in df_data.columns:
# df_data['uniprotID'] = df_data['enzyme']
# if 'CANO_RXN_SMILES' not in df_data.columns and 'reaction' in df_data.columns:
# df_data['CANO_RXN_SMILES'] = df_data['reaction']
# if 'sequence' not in df_data.columns:
# df_data['sequence'] = df_data['uniprotID'].map(UNIPROT_TO_SEQ)
# df_data = df_data[df_data['sequence'].notna()]
# 只是为了不报错,实际上不会用到
if 'Label' not in df_data.columns:
df_data['Label'] = 0
if model_conf.model == 'EnzymeCAGE':
print(f'Loading protein dict...')
df_data = df_data[df_data['uniprotID'].isin(protein_gvp_feat.keys()) & df_data['uniprotID'].isin(esm_node_feature.keys())]
print(f'len(infer_dataset): {len(infer_dataset)}')
test_loader = DataLoader(infer_dataset, batch_size=model_conf.batch_size, shuffle=False, follow_batch=follow_batch)
if model_conf.predict_mode == 'only_best':
model_name_list = ['best_model.pth']
elif model_conf.predict_mode == 'all':
model_name_list = [f'epoch_{i}.pth' for i in range(20)]
else:
assert False, 'predict_mode must be only_best or all'
for model_name in tqdm(model_name_list):
ckpt_path = os.path.join(model_conf.ckpt_dir, model_name)
if not os.path.exists(ckpt_path):
continue
best_state_dict = torch.load(ckpt_path)
model.load_state_dict(best_state_dict)
model.to(device)
filename = os.path.basename(model_conf.data_path).split('.')[0] + '_' + model_name.replace('.pth', '.csv')
save_path = os.path.join(model_conf.ckpt_dir, filename)
print('Start inference...')
model.eval()
preds, _ = model.evaluate(test_loader, show_progress=True)
print(f'preds.shape: {preds.shape}')
df_data['pred'] = preds.cpu()
df_data.to_csv(save_path, index=False)
print('Save pred result to: ', save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
args = parser.parse_args()
assert os.path.exists(args.config)
model_conf = Config(args.config)
seed = 42 if not hasattr(model_conf, 'seed') else model_conf.seed
seed_everything(seed)
inference(model_conf)