Skip to content

Latest commit

 

History

History
36 lines (29 loc) · 1.21 KB

File metadata and controls

36 lines (29 loc) · 1.21 KB

Towards fast embedded moving horizon state-of-charge estimation for lithium-ion batteries [paper]

Wan, Yiming, Songtao Du, Jiayu Yan, and Zhuo Wang.

"Towards fast embedded moving horizon state-of-charge estimation for lithium-ion batteries."

Journal of Energy Storage 78 (2024): 110024.

Keywords

  • State-of-charge estimation
  • Moving horizon estimation
  • Real-time computation
  • Lithium-ion battery

Steps to run

  • Open Matlab or Octave.
  • Set ./matlabcode or ./octavecode as the current working directory.
  • Run the main_ekf.m to implement the joint EKF.
  • Run the main_optimalMHE.m to implement the optimal jMHE.
  • Run the main_fastMHE.m to implement the fast jMHE.
  • Run the main_fasterMHE.m to implement the fast jMHE with ETR.

Citation

If you find our work useful in your research or publications, please consider citing:

@article{wan2024towards,
  title={Towards fast embedded moving horizon state-of-charge estimation for lithium-ion batteries},
  author={Wan, Yiming and Du, Songtao and Yan, Jiayu and Wang, Zhuo},
  journal={Journal of Energy Storage},
  volume={78},
  pages={110024},
  year={2024},
  publisher={Elsevier}
}